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2.5 Standing waves or stationary waves
When either of the two scenarios of wave reflection happens, the incident waye
meets the reflected wave. These waves move past each other in opposite directions
causing interference. When these two waves have the same frequency, the product of
this is called the standing waves. Standing waves appear to be standing still, hence
the name. To understand how standing waves occur, we can analyze them as follows

When the incident wave and reflected wave first meet, both waves have an

amplitude is zero. As the waves continue to move past each other, they continue to
interfere with each other either constructively of destructively.
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Every point j“ the "?Cdillm having a standing wave -

mnph'tudc of the osul'lutinns depends on the li)czl‘ti(()‘ll()s;l“\iltcs up and down and the
sl;‘md.mg waves on strings, it looks like the wave is n()t()n the point. When we observe
prmcmlc of stumh_ng waves 1s the basis of resona \fwlf]g Bad Standiigisutl, Lhe
instruments get their sound. The points in a stzmdi;\g ;:I]aLVC d}n,d how many m}ls'\cu\
‘mfj do not move are called nodes. The points which re c thatappeat 1o FEmain flat
height are called antinodes. ch reach the maximum oscillation

When two sets of progressive wave trains of the same typé (1 e, both

» !‘ongitudinal or both transverse) having the same amplitude and'sz;mo ti
p’eriod/frequency/wavelgnéth travelling with san;e speed along theesalrr:e
straight line in"opposite directions sub,erirhpose, a new set of waves aree
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There are two types of standing waves:

.1) angitudin_al Stationary waves: are formed as a result of superimposition of two
.dentical longitudinal waves travelling in opposite directions.

2) Transverse Stationary waves: are formed as a result of superimposition of two
identical transverse waves travelling in opposite directions.

Characteristics of stationary waves

e The disturbance is confined to a particular region between the starting point

and the reflecting point of the wave.
e There is no onward motion of the disturbance from one particle to the

adjoining particle and so on beyond this particular region.
o The total energy correlated with a stationary wave is twice the energy of each
of incident and reflected wave. But there is no flow or transference of energy

along the stationary wave.
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2.5.1 Standing wayes — Fixed and Free Ends
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2.5.2 Standing waves in strings and normal modes of VlbraﬁOnS
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Using the relation: sinC —sinD = 2
= 2 cos
2 Sin > ,we get
y(x t) = —2rcos wtsin kx
..(2)
y (x,y) = —(—2rsinkx) cos wt
..3)

Equation (3) do not represe .

- - - docs)not movr;—Pt:)Cbtjnlt a m.ovmg harmonic wave i.e., the disturbance or
o s e amnlitude of osel C-ll 1er side. The quantity within the bracket, 1

S ererent Vah[l’e Olf : Oth;)sc:lllat.lon of the element of the string located ate:);)‘s"\iicf\- ):
e e, wiliers 4D ]itudc, . amplitude is different. This is in contrast to a progress\vé

2 p of wave, where amplitude of wave is sa f
Eqn. (3) therefore, represents a standing wave, i.e., a wave in wT:chO:ha“ e\emi‘m&
, 1.€., . e wave form

does not move.
\t one end of the string, where x = 0, from (3)

y = —2rcoswt sin0% =0

“his end is a node.

the other end of the string, where x =L

n(3),

.2 r coswt sin kL

(4

e other end of the string is fixed,

y=0,at this end. This end is also a node.

sinkL=0=sinnn,

2T L

—n or —L=nm OF A= — ..(5)
A n
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tn=1, 2, 3... Correspond t0 1

4), fory = 0 where,n=0,1,2,3....

(33)
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Let A, be the wavelength :
gth of standing waves set up on the string corresponds
sponding ton =

2L
From(5), M= &5 =
2
o stri . )
string vibrates in two segments of equal length, as shown in Fig.2.8 (b). The
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i.e., frequency of vibration of string becomes twice the fundamental frequency The
econd harmonic or first overtone.
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(iii) Third normal mode of vibration
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Position of Nodes:
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They are represented by 1. From Fig. 2.8(b), we observe that there are tw

the first normal made of vibration, three nodes in the second norma]
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For example, in first normal mode, n = 1, the antinode is at X L =Y Fig.2(
tinode 18 at X wride —Z.F\g.?-k\ﬂ\(d\

In 2nd normal mode of vibration, n = 2, the antinodes are at X = L —Yandx=
- % D ¢ A

L _ 3L 2x2 A

ax2 4

.se are shown in Fig 2.8 (b), and so on.
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2.6 Longitudinal Waves
A longitudinal wave is the one that moves panallel to the direction of waves of
particles in motion. That is a straight parallel line above the particle. For instance in
the same rope Kept horizontally, if one introduces a pulse on the left and the night
end, the encrgy flows from both ends trapping the movements in a parallel motion.

These arc longitudinal waves.

Longitudinal Wave
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