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2.1 RANDOM VARIABLES OF THE DISCRETE TYPE
An outcome space S may be difficult to describe if the elements of S are not numbers.
We shall now discuss how we can use a rule by which each outcome of a random
experiment, an element s of S, may be associated with a real number x. We begin the
discussion with an example.

Example
2.1-1

A rat is selected at random from a cage and its sex is determined. The set of possi-
ble outcomes is female and male. Thus, the outcome space is S = {female, male} =
{F, M}. Let X be a function defined on S such that X(F) = 0 and X(M) = 1. X is then
a real-valued function that has the outcome space S as its domain and the set of real
numbers {x : x = 0, 1} as its range. We call X a random variable, and in this example,
the space associated with X is the set of numbers {x : x = 0, 1}.

We now formulate the definition of a random variable.

Definition 2.1-1
Given a random experiment with an outcome space S, a function X that assigns
one and only one real number X(s) = x to each element s in S is called a random
variable. The space of X is the set of real numbers {x : X(s) = x, s ∈ S}, where
s ∈ S means that the element s belongs to the set S.

REMARK As we give examples of random variables and their probability distribu-
tions, the reader will soon recognize that, when observing a random experiment, the
experimenter must take some type of measurement (or measurements). This mea-
surement can be thought of as the outcome of a random variable. We would simply
like to know the probability of a measurement resulting in A, a subset of the space
of X. If this is known for all subsets A, then we know the probability distribution of
the random variable. Obviously, in practice, we often do not know this distribution
exactly. Hence, statisticians make conjectures about these distributions; that is, we
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42 Chapter 2 Discrete Distributions

construct probabilistic models for random variables. The ability of a statistician to
model a real situation appropriately is a valuable trait. In this chapter we introduce
some probability models in which the spaces of the random variables consist of sets
of integers.

It may be that the set S has elements that are themselves real numbers. In such
an instance, we could write X(s) = s, so that X is the identity function and the space
of X is also S. This situation is illustrated in Example 2.1-2.

Example
2.1-2

Let the random experiment be the cast of a die. Then the outcome space associated
with this experiment is S = {1, 2, 3, 4, 5, 6}, with the elements of S indicating the
number of spots on the side facing up. For each s ∈ S, let X(s) = s. The space of the
random variable X is then {1, 2, 3, 4, 5, 6}.

If we associate a probability of 1/6 with each outcome, then, for example,
P(X = 5) = 1/6, P(2 ≤ X ≤ 5) = 4/6, and P(X ≤ 2) = 2/6 seem to be rea-
sonable assignments, where, in this example, {2 ≤ X ≤ 5} means {X = 2, 3, 4, or 5}
and {X ≤ 2} means {X = 1 or 2}.

The student will no doubt recognize two major difficulties here:

1. In many practical situations, the probabilities assigned to the events are
unknown.

2. Since there are many ways of defining a function X on S, which function do we
want to use?

As a matter of fact, the solutions to these problems in particular cases are major
concerns in applied statistics. In considering (2), statisticians try to determine what
measurement (or measurements) should be taken on an outcome; that is, how best
do we “mathematize” the outcome? These measurement problems are most difficult
and can be answered only by getting involved in a practical project. For (1), we often
need to estimate these probabilities or percentages through repeated observations
(called sampling). For example, what percentage of newborn girls in the University
of Iowa Hospital weigh less than 7 pounds? Here a newborn baby girl is the outcome,
and we have measured her one way (by weight), but obviously there are many other
ways of measuring her. If we let X be the weight in pounds, we are interested in
the probability P(X < 7), and we can estimate this probability only by repeated
observations. One obvious way of estimating it is by the use of the relative frequency
of {X < 7} after a number of observations. If it is reasonable to make additional
assumptions, we will study other ways of estimating that probability. It is this latter
aspect with which the field of mathematical statistics is concerned. That is, if we
assume certain models, we find that the theory of statistics can explain how best to
draw conclusions or make predictions.

In many instances, it is clear exactly what function X the experimenter wants to
define on the outcome space. For example, the caster in the dice game called craps
is concerned about the sum of the spots (say X) that are facing upward on the pair
of dice. Hence, we go directly to the space of X, which we shall denote by the same
letter S. After all, in the dice game the caster is directly concerned only with the
probabilities associated with X. Thus, for convenience, in many instances the reader
can think of the space of X as being the outcome space.

Let X denote a random variable with space S. Suppose that we know how
the probability is distributed over the various subsets A of S; that is, we can com-
pute P(X ∈ A). In this sense, we speak of the distribution of the random variable
X, meaning, of course, the distribution of probability associated with the space
S of X.
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Let X denote a random variable with one-dimensional space S, a subset of the
real numbers. Suppose that the space S contains a countable number of points; that
is, either S contains a finite number of points, or the points of S can be put into a
one-to-one correspondence with the positive integers. Such a set S is called a set
of discrete points or simply a discrete outcome space. Furthermore, any random
variable defined on such an S can assume at most a countable number of values,
and is therefore called a random variable of the discrete type. The corresponding
probability distribution likewise is said to be of the discrete type.

For a random variable X of the discrete type, the probability P(X = x) is
frequently denoted by f (x), and this function f (x) is called the probability mass
function. Note that some authors refer to f (x) as the probability function, the fre-
quency function, or the probability density function. In the discrete case, we shall
use “probability mass function,” and it is hereafter abbreviated pmf.

Let f (x) be the pmf of the random variable X of the discrete type, and let S be
the space of X. Since f (x) = P(X = x) for x ∈ S, f (x) must be nonnegative for x ∈ S,
and we want all these probabilities to add to 1 because each P(X = x) represents the
fraction of times x can be expected to occur. Moreover, to determine the probability
associated with the event A ∈ S, we would sum the probabilities of the x values in A.
This leads us to the following definition.

Definition 2.1-2
The pmf f (x) of a discrete random variable X is a function that satisfies the
following properties:

(a) f (x) > 0, x ∈ S;

(b)
∑
x∈S

f (x) = 1;

(c) P(X ∈ A) =
∑
x∈A

f (x), where A ⊂ S.

Of course, we usually let f (x) = 0 when x /∈ S; thus, the domain of f (x) is the
set of real numbers. When we define the pmf f (x) and do not say “zero elsewhere,”
we tacitly mean that f (x) has been defined at all x’s in the space S and it is assumed
that f (x) = 0 elsewhere; that is, f (x) = 0 when x /∈ S. Since the probability
P(X = x) = f (x) > 0 when x ∈ S, and since S contains all the outcomes with positive
probabilities associated with X, we sometimes refer to S as the support of X as well
as the space of X.

Cumulative probabilities are often of interest. We call the function defined by

F(x) = P(X ≤ x), −∞ < x < ∞,

the cumulative distribution function and abbreviate it as cdf. The cdf is sometimes
referred to as the distribution function of the random variable X. Values of the cdf
of certain random variables are given in the appendix and will be pointed out as we
use them (see Appendix B, Tables II, III, IV, Va, VI, VII, and IX).

When a pmf is constant on the space or support, we say that the distribution
is uniform over that space. As an illustration, in Example 2.1-2 X has a discrete
uniform distribution on S = {1, 2, 3, 4, 5, 6} and its pmf is

f (x) = 1
6

, x = 1, 2, 3, 4, 5, 6.

We can generalize this result by letting X have a discrete uniform distribution over
the first m positive integers, so that its pmf is
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f (x) = 1
m

, x = 1, 2, 3, . . . , m.

The cdf of X is defined as follows where k = 1, 2, . . . , m − 1. We have

F(x) = P(X ≤ x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x < 1,
k
m

, k ≤ x < k + 1,

1, m ≤ x.

Note that this is a step function with a jump of size 1/m for x = 1, 2, . . . , m.
We now give an example in which X does not have a uniform distribution.

Example
2.1-3

Roll a fair four-sided die twice, and let X be the maximum of the two outcomes. The
outcome space for this experiment is S0 = {(d1, d2) : d1 = 1, 2, 3, 4; d2 = 1, 2, 3, 4},
where we assume that each of these 16 points has probability 1/16. Then P(X =
1) = P[(1, 1)] = 1/16, P(X = 2) = P[{(1, 2), (2, 1), (2, 2)}] = 3/16, and similarly
P(X = 3) = 5/16 and P(X = 4) = 7/16. That is, the pmf of X can be written simply
as

f (x) = P(X = x) = 2x − 1
16

, x = 1, 2, 3, 4. (2.1-1)

We could add that f (x) = 0 elsewhere; but if we do not, the reader should take f (x)
to equal zero when x /∈ S = {1, 2, 3, 4}.

A better understanding of a particular probability distribution can often be
obtained with a graph that depicts the pmf of X. Note that the graph of the pmf
when f (x) > 0 would be simply the set of points {[x, f (x)] : x ∈ S}, where S is the
space of X. Two types of graphs can be used to give a better visual appreciation of
the pmf: a line graph and a probability histogram. A line graph of the pmf f (x) of
the random variable X is a graph having a vertical line segment drawn from (x, 0) to
[x, f (x)] at each x in S, the space of X. If X can assume only integer values, a proba-
bility histogram of the pmf f (x) is a graphical representation that has a rectangle of
height f (x) and a base of length 1, centered at x for each x ∈ S, the space of X. Thus,
the area of each rectangle is equal to the respective probability f (x), and the total
area of a probability histogram is 1.

Figure 2.1-1 displays a line graph and a probability histogram for the pmf f (x)
defined in Equation 2.1-1.

Our next probability model uses the material in Section 1.2 on methods of enu-
meration. Consider a collection of N = N1+N2 similar objects, N1 of them belonging
to one of two dichotomous classes (red chips, say) and N2 of them belonging to
the second class (blue chips, say). A collection of n objects is selected from these
N objects at random and without replacement. Find the probability that exactly x
(where the nonnegative integer x satisfies x ≤ n, x ≤ N1, and n − x ≤ N2) of these
n objects belong to the first class and n − x belong to the second. Of course, we can

select x objects from the first class in any one of
(

N1

x

)
ways and n−x objects from the

second class in any one of
(

N2

n − x

)
ways. By the multiplication principle, the prod-

uct
(

N1

x

)(
N2

n − x

)
equals the number of ways the joint operation can be performed.
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Figure 2.1-1 Line graph and probability histogram

If we assume that each of the
(

N
n

)
ways of selecting n objects from N = N1 + N2

objects has the same probability, it follows that the desired probability is

f (x) = P(X = x) =

(
N1

x

)(
N2

n − x

)
(

N
n

) ,

where the space S is the collection of nonnegative integers x that satisfies the
inequalities x ≤ n, x ≤ N1, and n − x ≤ N2. We say that the random variable X
has a hypergeometric distribution.

Example
2.1-4

Some examples of hypergeometric probability histograms are given in Figure 2.1-2.
The values of N1, N2, and n are given with each figure.

Example
2.1-5

In a small pond there are 50 fish, 10 of which have been tagged. If a fisherman’s
catch consists of 7 fish selected at random and without replacement, and X denotes
the number of tagged fish, the probability that exactly 2 tagged fish are caught is

P(X = 2) =

(
10
2

)(
40
5

)
(

50
7

) = (45)(658,008)
99,884,400

= 246,753
832,370

= 0.2964.

Example
2.1-6

A lot (collection) consisting of 100 fuses is inspected by the following procedure:
Five fuses are chosen at random and tested; if all five blow at the correct amperage,
the lot is accepted. Suppose that the lot contains 20 defective fuses. If X is a random
variable equal to the number of defective fuses in the sample of 5, the probability of
accepting the lot is

P(X = 0) =

(
20
0

)(
80
5

)
(

100
5

) = 19,513
61,110

= 0.3193.
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Figure 2.1-2 Hypergeometric probability histograms

More generally, the pmf of X is

f (x) = P(X = x) =

(
20
x

)(
80

5 − x

)
(

100
5

) , x = 0, 1, 2, 3, 4, 5.

In Section 1.1, we discussed the relationship between the probability P(A) of an
event A and the relative frequency N (A)/n of occurrences of event A in n repetitions
of an experiment. We shall now extend those ideas.

Suppose that a random experiment is repeated n independent times. Let A =
{X = x}, the event that x is the outcome of the experiment. Then we would expect
the relative frequency N (A)/n to be close to f (x). The next example illustrates this
property.

Example
2.1-7

A fair four-sided die with outcomes 1, 2, 3, and 4 is rolled twice. Let X equal the sum
of the two outcomes. Then the possible values of X are 2, 3, 4, 5, 6, 7, and 8. The
following argument suggests that the pmf of X is given by f (x) = (4 − |x − 5|)/16,
for x = 2, 3, 4, 5, 6, 7, 8 [i.e., f (2) = 1/16, f (3) = 2/16, f (4) = 3/16, f (5) = 4/16,
f (6) = 3/16, f (7) = 2/16, and f (8) = 1/16]: Intuitively, these probabilities seem
correct if we think of the 16 points (result on first roll, result on second roll) and
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Table 2.1-1 Sum of two tetrahedral dice

Number of Observations Relative Frequency Probability of
x of x of x {X = x}, f (x)

2 71 0.071 0.0625

3 124 0.124 0.1250

4 194 0.194 0.1875

5 258 0.258 0.2500

6 177 0.177 0.1875

7 122 0.122 0.1250

8 54 0.054 0.0625

assume that each has probability 1/16. Then note that X = 2 only for the point
(1, 1), X = 3 for the two points (2, 1) and (1, 2), and so on. This experiment was
simulated 1000 times on a computer. Table 2.1-1 lists the results and compares the
relative frequencies with the corresponding probabilities.

A graph can be used to display the results shown in Table 2.1-1. The probability
histogram of the pmf f (x) of X is given by the dotted lines in Figure 2.1-3. It is super-
imposed over the shaded histogram that represents the observed relative frequencies
of the corresponding x values. The shaded histogram is the relative frequency
histogram. For random experiments of the discrete type, this relative frequency
histogram of a set of data gives an estimate of the probability histogram of the asso-
ciated random variable when the latter is unknown. (Estimation is considered in
detail later in the book.)
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Figure 2.1-3 Sum of two tetrahedral dice
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Exercises

2.1-1. Let the pmf of X be defined by f (x) = x/9,
x = 2, 3, 4.

(a) Draw a line graph for this pmf.

(b) Draw a probability histogram for this pmf.

2.1-2. Let a chip be taken at random from a bowl that
contains six white chips, three red chips, and one blue
chip. Let the random variable X = 1 if the outcome is
a white chip, let X = 5 if the outcome is a red chip, and
let X = 10 if the outcome is a blue chip.

(a) Find the pmf of X.

(b) Graph the pmf as a line graph.

2.1-3. For each of the following, determine the constant
c so that f (x) satisfies the conditions of being a pmf for
a random variable X, and then depict each pmf as a line
graph:

(a) f (x) = x/c, x = 1, 2, 3, 4.

(b) f (x) = cx, x = 1, 2, 3, . . . , 10.

(c) f (x) = c(1/4)x, x = 1, 2, 3, . . . .

(d) f (x) = c(x + 1)2, x = 0, 1, 2, 3.

(e) f (x) = x/c, x = 1, 2, 3, . . . , n.

(f) f (x) = c
(x + 1)(x + 2)

, x = 0, 1, 2, 3, . . . .

Hint: In part ( f ), write f (x) = 1/(x + 1) − 1/(x + 2).

2.1-4. The state of Michigan generates a three-digit num-
ber at random twice a day, seven days a week for its Daily
3 game. The numbers are generated one digit at a time.
Consider the following set of 50 three-digit numbers as
150 one-digit integers that were generated at random:

169 938 506 757 594 656 444 809 321 545

732 146 713 448 861 612 881 782 209 752

571 701 852 924 766 633 696 023 601 789

137 098 534 826 642 750 827 689 979 000

933 451 945 464 876 866 236 617 418 988

Let X denote the outcome when a single digit is gener-
ated.

(a) With true random numbers, what is the pmf of X?
Draw the probability histogram.

(b) For the 150 observations, determine the relative fre-
quencies of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively.

(c) Draw the relative frequency histogram of the obser-
vations on the same graph paper as that of the proba-
bility histogram. Use a colored or dashed line for the
relative frequency histogram.

2.1-5. The pmf of X is f (x) = (5 − x)/10, x = 1, 2, 3, 4.

(a) Graph the pmf as a line graph.

(b) Use the following independent observations of X,
simulated on a computer, to construct a table like
Table 2.1-1:

3 1 2 2 3 2 2 2 1 3 3 2 3 2 4 4 2 1 1 3

3 1 2 2 1 1 4 2 3 1 1 1 2 1 3 1 1 3 3 1

1 1 1 1 1 4 1 3 1 2 4 1 1 2 3 4 3 1 4 2

2 1 3 2 1 4 1 1 1 2 1 3 4 3 2 1 4 4 1 3

2 2 2 1 2 3 1 1 4 2 1 4 2 1 2 3 1 4 2 3

(c) Construct a probability histogram and a relative fre-
quency histogram like Figure 2.1-3.

2.1-6. Let a random experiment be the casting of a pair
of fair dice, each having six faces, and let the random
variable X denote the sum of the dice.

(a) With reasonable assumptions, determine the pmf f (x)
of X. Hint: Picture the sample space consisting of the
36 points (result on first die, result on second die),
and assume that each has probability 1/36. Find the
probability of each possible outcome of X, namely,
x = 2, 3, 4, . . . , 12.

(b) Draw a probability histogram for f (x).

2.1-7. Let a random experiment be the casting of a pair
of fair six-sided dice and let X equal the minimum of the
two outcomes.

(a) With reasonable assumptions, find the pmf of X.

(b) Draw a probability histogram of the pmf of X.

(c) Let Y equal the range of the two outcomes (i.e., the
absolute value of the difference of the largest and the
smallest outcomes). Determine the pmf g(y) of Y for
y = 0, 1, 2, 3, 4, 5.

(d) Draw a probability histogram for g(y).

2.1-8. A fair four-sided die has two faces numbered 0 and
two faces numbered 2. Another fair four-sided die has its
faces numbered 0, 1, 4, and 5. The two dice are rolled.
Let X and Y be the respective outcomes of the roll. Let
W = X + Y.

(a) Determine the pmf of W.

(b) Draw a probability histogram of the pmf of W.

2.1-9. The pmf of X is f (x) = (1 + |x − 3|)/11,
for x = 1, 2, 3, 4, 5. Graph this pmf as a line graph.
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2.1-10. Suppose there are 3 defective items in a lot (col-
lection) of 50 items. A sample of size 10 is taken at
random and without replacement. Let X denote the num-
ber of defective items in the sample. Find the probability
that the sample contains

(a) Exactly one defective item.

(b) At most one defective item.

2.1-11. In a lot (collection) of 100 light bulbs, there are 5
defective bulbs. An inspector inspects 10 bulbs selected at
random. Find the probability of finding at least one defec-
tive bulb. Hint: First compute the probability of finding
no defectives in the sample.

2.1-12. Let X be the number of accidents per week in a
factory. Let the pmf of X be

f (x) = 1
(x + 1)(x + 2)

= 1
x + 1

− 1
x + 2

, x = 0, 1, 2, . . . .

Find the conditional probability of X ≥ 4, given that
X ≥ 1.

2.1-13. A professor gave her students six essay questions
from which she will select three for a test. A student has
time to study for only three of these questions. What is
the probability that, of the questions studied,

(a) at least one is selected for the test?

(b) all three are selected?

(c) exactly two are selected?

2.1-14. Often in buying a product at a supermarket, there
is a concern about the item being underweight. Suppose
there are 20 “one-pound” packages of frozen ground
turkey on display and 3 of them are underweight. A
consumer group buys 5 of the 20 packages at random.
What is the probability of at least one of the five being
underweight?

2.1-15. Five cards are selected at random without replace-
ment from a standard, thoroughly shuffled 52-card deck

of playing cards. Let X equal the number of face cards
(kings, queens, jacks) in the hand. Forty observations of
X yielded the following data:

2 1 2 1 0 0 1 0 1 1 0 2 0 2 3 0 1 1 0 3

1 2 0 2 0 2 0 1 0 1 1 2 1 0 1 1 2 1 1 0

(a) Argue that the pmf of X is

f (x) =

(
12
x

)(
40

5 − x

)
(

52
5

) , x = 0, 1, 2, 3, 4, 5,

and thus, that f (0) = 2109/8330, f (1) = 703/1666,
f (2) = 209/833, f (3) = 55/833, f (4) = 165/21,658,
and f (5) = 33/108,290.

(b) Draw a probability histogram for this distribution.

(c) Determine the relative frequencies of 0, 1, 2, 3, and
superimpose the relative frequency histogram on your
probability histogram.

2.1-16. (Michigan Mathematics Prize Competition, 1992,
Part II) From the set {1, 2, 3, . . . , n}, k distinct integers
are selected at random and arranged in numerical order
(from lowest to highest). Let P(i, r, k, n) denote the prob-
ability that integer i is in position r. For example, observe
that P(1, 2, k, n) = 0, as it is impossible for the number 1
to be in the second position after ordering.

(a) Compute P(2, 1, 6, 10).

(b) Find a general formula for P(i, r, k, n).

2.1-17. A bag contains 144 ping-pong balls. More than
half of the balls are painted orange and the rest are
painted blue. Two balls are drawn at random without
replacement. The probability of drawing two balls of the
same color is the same as the probability of drawing two
balls of different colors. How many orange balls are in
the bag?

2.2 MATHEMATICAL EXPECTATION
An extremely important concept in summarizing important characteristics of distri-
butions of probability is that of mathematical expectation, which we introduce with
an example.

Example
2.2-1

An enterprising young man who needs a little extra money devises a game of chance
in which some of his friends might wish to participate. The game that he proposes
is to let the participant cast a fair die and then receive a payment according to
the following schedule: If the event A = {1, 2, 3} occurs, he receives one dollar; if
B = {4, 5} occurs, he receives two dollars; and if C = {6} occurs, he receives three
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dollars. If X is a random variable that represents the payoff, then the pmf of X is
given by

f (x) = (4 − x)/6, x = 1, 2, 3;

that is, f (1) = 3/6, f (2) = 2/6, f (3) = 1/6. If the game is repeated a large number
of times, the payment of one dollar would occur about 3/6 of the times, two dollars
about 2/6 of the times, and three dollars about 1/6 of the times. Thus, the average
payment would be

(1)
(

3
6

)
+ (2)

(
2
6

)
+ (3)

(
1
6

)
= 10

6
= 5

3
.

That is, the young man expects to pay 5/3 of a dollar “on the average.” This is called
the mathematical expectation of the payment. If the young man could charge two
dollars to play the game, he could make 2 − 5/3 = 1/3 of a dollar on the average
each play. Note that this mathematical expectation can be written

E(X) =
3∑

x=1

xf (x)

and is often denoted by the Greek letter μ, which is called the mean of X or of its
distribution.

Suppose that we are interested in another function of X, say u(X). Let us call
it Y = u(X). Of course, Y is a random variable and has a pmf. For illustration, in
Example 2.2-1, Y = X2 has the pmf

g(y) = (4 − √
y )/6, y = 1, 4, 9;

that is, g(1) = 3/6, g(4) = 2/6, g(9) = 1/6. Moreover, where SY is the space of Y, the
mean of Y is

μY =
∑

y∈SY

y g(y) = (1)
(

3
6

)
+ (4)

(
2
6

)
+ (9)

(
1
6

)
= 20

6
= 10

3
.

Participants in the young man’s game might be more willing to play this game for 4
dollars as they can win 9 − 4 = 5 dollars and lose only 4 − 1 = 3 dollars. Note that
the young man can expect to win 4 − 10/3 = 2/3 of a dollar on the average each
play. A game based upon Z = X3 might even be more attractive to participants if
the young man charges 10 dollars to play this game. Then the participant could win
27 − 10 = 17 dollars and lose only 10 − 1 = 9 dollars. The details of this latter game
are covered in Exercise 2.2-5.

In any case, it is important to note that

E(Y) =
∑

y∈SY

y g(y) =
∑

x∈SX

x2f (x) = 20
6

= 10
3

.

That is, the same value is obtained by either formula. While we have not proved, for
a general function u(x), that if Y = u(X), then∑

y∈SY

y g(y) =
∑

x∈SX

u(x) f (x);
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we have illustrated it in this simple case. This discussion suggests the more general
definition of mathematical expectation of a function of X.

Definition 2.2-1
If f (x) is the pmf of the random variable X of the discrete type with space S, and
if the summation∑

x∈S

u(x)f (x), which is sometimes written
∑

S

u(x)f (x),

exists, then the sum is called the mathematical expectation or the expected value
of u(X), and it is denoted by E[u(X)]. That is,

E[u(X)] =
∑
x∈S

u(x)f (x).

We can think of the expected value E[u(X)] as a weighted mean of u(x), x ∈ S,
where the weights are the probabilities f (x) = P(X = x), x ∈ S.

REMARK The usual definition of mathematical expectation of u(X) requires that
the sum converge absolutely—that is, that∑

x∈S

|u(x)| f (x)

converge and be finite. The reason for the absolute convergence is that it allows one,
in the advanced proof of ∑

x∈SX

u(x)f (x) =
∑

y∈SY

yg(y),

to rearrange the order of the terms in the x-summation. In this book, each u(x) is
such that the convergence is absolute.

We provide another example.

Example
2.2-2

Let the random variable X have the pmf

f (x) = 1
3

, x ∈ SX ,

where SX = {−1, 0, 1}. Let u(X) = X2. Then

E(X2) =
∑

x∈SX

x2f (x) = (−1)2
(

1
3

)
+ (0)2

(
1
3

)
+ (1)2

(
1
3

)
= 2

3
.

However, the support of the random variable Y = X2 is SY = {0, 1} and

P(Y = 0) = P(X = 0) = 1
3

,

P(Y = 1) = P(X = −1) + P(X = 1) = 1
3

+ 1
3

= 2
3

.
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That is,

g(y) =

⎧⎪⎨⎪⎩
1
3

, y = 0,

2
3

, y = 1;

and SY = {0, 1}. Hence,

μY = E(Y) =
∑

y∈SY

y g(y) = (0)
(

1
3

)
+ (1)

(
2
3

)
= 2

3
,

which again illustrates the preceding observation.

Before presenting additional examples, we list some useful facts about mathe-
matical expectation in the following theorem.

Theorem
2.2-1

When it exists, the mathematical expectation E satisfies the following properties:

(a) If c is a constant, then E(c) = c.

(b) If c is a constant and u is a function, then

E[c u(X)] = cE[u(X)].

(c) If c1 and c2 are constants and u1 and u2 are functions, then

E[c1u1(X) + c2u2(X)] = c1E[u1(X)] + c2E[u2(X)].

Proof First, for the proof of (a), we have

E(c) =
∑
x∈S

cf (x) = c
∑
x∈S

f (x) = c

because ∑
x∈S

f (x) = 1.

Next, to prove (b), we see that

E[c u(X)] =
∑
x∈S

c u(x)f (x)

= c
∑
x∈S

u(x)f (x)

= c E[u(X)].

Finally, the proof of (c) is given by

E[c1u1(X) + c2u2(X)] =
∑
x∈S

[c1u1(x) + c2u2(x)] f (x)

=
∑
x∈S

c1u1(x)f (x) +
∑
x∈S

c2u2(x)f (x).

By applying (b), we obtain

E[c1u1(X) + c2u2(X)] = c1E[u1(X)] + c2E[u2(X)]. �
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Property (c) can be extended to more than two terms by mathematical induc-
tion; that is, we have

(c′) E

⎡⎣ k∑
i=1

ci ui(X)

⎤⎦ =
k∑

i=1

ci E[ui(X)].

Because of property (c′), the mathematical expectation E is often called a linear
or distributive operator.

Example
2.2-3

Let X have the pmf

f (x) = x
10

, x = 1, 2, 3, 4.

Then the mean of X is

μ = E(X) =
4∑

x=1

x
( x

10

)
= (1)

(
1
10

)
+ (2)

(
2
10

)
+ (3)

(
3
10

)
+ (4)

(
4
10

)
= 3,

E(X2) =
4∑

x=1

x2
( x

10

)
= (1)2

(
1

10

)
+ (2)2

(
2

10

)
+ (3)2

(
3
10

)
+ (4)2

(
4
10

)
= 10,

and

E[X(5 − X)] = 5E(X) − E(X2) = (5)(3) − 10 = 5.

Example
2.2-4

Let u(x) = (x − b)2, where b is not a function of X, and suppose E[(X − b)2] exists.
To find that value of b for which E[(X − b)2] is a minimum, we write

g(b) = E[(X − b)2] = E[X2 − 2bX + b2]

= E(X2) − 2bE(X) + b2

because E(b2) = b2. To find the minimum, we differentiate g(b) with respect to b,
set g′(b) = 0, and solve for b as follows:

g′(b) = −2E(X) + 2b = 0,

b = E(X).

Since g′′(b) = 2 > 0, the mean of X, μ = E(X), is the value of b that minimizes
E[(X − b)2].

Example
2.2-5

Let X have a hypergeometric distribution in which n objects are selected from
N = N1 + N2 objects as described in Section 2.1. Then

μ = E(X) =
∑
x∈S

x

(
N1

x

)(
N2

n − x

)
(

N
n

) .
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Since the first term of this summation equals zero when x = 0, and since(
N
n

)
=

(
N
n

)(
N − 1
n − 1

)
,

we can write

E(X) =
∑

0<x∈S

x
N1!

x!(N1 − x)!

(
N2

n − x

)
(

N
n

)(
N − 1
n − 1

) .

Of course, x/x! = 1/(x − 1)! when x �= 0; thus,

E(X) =
( n

N

) ∑
0<x∈S

(N1)(N1 − 1)!
(x − 1)!(N1 − x)!

(
N2

n − x

)
(

N − 1
n − 1

)

= n
(

N1

N

) ∑
0<x∈S

(
N1 − 1
x − 1

)(
N2

n − 1 − (x − 1)

)
(

N − 1
n − 1

) .

However, when x > 0, the summand of this last expression represents the probability
of obtaining, say, x − 1 red chips if n − 1 chips are selected from N1 − 1 red chips and
N2 blue chips. Since the summation is over all possible values of x − 1, it must sum
to 1, as it is the sum of all possible probabilities of x − 1. Thus,

μ = E(X) = n
(

N1

N

)
,

which is a result that agrees with our intuition: We expect the number X of red chips
to equal the product of the number n of selections and the fraction N1/N of red chips
in the original collection.

Example
2.2-6

Say an experiment has probability of success p, where 0 < p < 1, and probability of
failure 1 − p = q. This experiment is repeated independently until the first success
occurs; say this happens on the X trial. Clearly the space of X is SX = {1, 2, 3, 4, . . .}.
What is P(X = x), where x ∈ SX? We must observe x − 1 failures and then a success
to have this happen. Thus, due to the independence, the probability is

f (x) = P(X = x) =
x−1 q′s︷ ︸︸ ︷

q · q · · · q ·p = qx−1p, x ∈ SX .

Since p and q are positive, this is a pmf because∑
x∈SX

qx−1p = p(1 + q + q2 + q3 + · · · ) = p
1 − q

= p
p

= 1.

The mean of this geometric distribution is

μ =
∞∑

x=1

xf (x) = (1)p + (2)qp + (3)q2p + · · ·
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and

qμ = (q)p + (2)q2p + (3)q3p + · · · .

If we subtract the second of these two equations from the first, we have

(1 − q)μ = p + pq + pq2 + pq3 + · · ·
= (p)(1 + q + q2 + q3 + · · · )

= (p)
(

1
1 − q

)
= 1.

That is,

μ = 1
1 − q

= 1
p

.

For illustration, if p = 1/10, we would expect μ = 10 trials are needed on the average
to observe a success. This certainly agrees with our intuition.

Exercises

2.2-1. Find E(X) for each of the distributions given in
Exercise 2.1-3.

2.2-2. Let the random variable X have the pmf

f (x) = (|x| + 1)2

9
, x = −1, 0, 1.

Compute E(X), E(X2), and E(3X2 − 2X + 4).

2.2-3. Let the random variable X be the number of days
that a certain patient needs to be in the hospital. Suppose
X has the pmf

f (x) = 5 − x
10

, x = 1, 2, 3, 4.

If the patient is to receive $200 from an insurance com-
pany for each of the first two days in the hospital and $100
for each day after the first two days, what is the expected
payment for the hospitalization?

2.2-4. An insurance company sells an automobile policy
with a deductible of one unit. Let X be the amount of the
loss having pmf

f (x) =
⎧⎨⎩ 0.9, x = 0,

c
x

, x = 1, 2, 3, 4, 5, 6,

where c is a constant. Determine c and the expected value
of the amount the insurance company must pay.

2.2-5. In Example 2.2-1 let Z = u(X) = X3.

(a) Find the pmf of Z, say h(z).

(b) Find E(Z).

(c) How much, on average, can the young man expect to
win on each play if he charges $10 per play?

2.2-6. Let the pmf of X be defined by f (x) = 6/(π2x2),
x = 1, 2, 3, . . .. Show that E(X) = +∞ and thus, does not
exist.

2.2-7. In the gambling game chuck-a-luck, for a $1 bet it is
possible to win $1, $2, or $3 with respective probabilities
75/216, 15/216, and 1/216. One dollar is lost with probabil-
ity 125/216. Let X equal the payoff for this game and find
E(X). Note that when a bet is won, the $1 that was bet, in
addition to the $1, $2, or $3 that is won, is returned to the
bettor.

2.2-8. Let X be a random variable with support
{1, 2, 3, 5, 15, 25, 50}, each point of which has the same
probability 1/7. Argue that c = 5 is the value that mini-
mizes h(c) = E( |X − c| ). Compare c with the value of b
that minimizes g(b) = E[(X − b)2].

2.2-9. A roulette wheel used in a U.S. casino has 38 slots,
of which 18 are red, 18 are black, and 2 are green. A
roulette wheel used in a French casino has 37 slots, of
which 18 are red, 18 are black, and 1 is green. A ball is
rolled around the wheel and ends up in one of the slots
with equal probability. Suppose that a player bets on red.
If a $1 bet is placed, the player wins $1 if the ball ends up
in a red slot. (The player’s $1 bet is returned.) If the ball
ends up in a black or green slot, the player loses $1. Find
the expected value of this game to the player in

(a) The United States.

(b) France.

2.2-10. In the casino game called high–low, there are
three possible bets. Assume that $1 is the size of the bet.
A pair of fair six-sided dice is rolled and their sum is cal-
culated. If you bet low, you win $1 if the sum of the dice is



56 Chapter 2 Discrete Distributions

{2, 3, 4, 5, 6}. If you bet high, you win $1 if the sum of the
dice is {8, 9, 10, 11, 12}. If you bet on {7}, you win $4 if a
sum of 7 is rolled. Otherwise, you lose on each of the three
bets. In all three cases, your original dollar is returned if
you win. Find the expected value of the game to the bettor
for each of these three bets.

2.2-11. In the gambling game craps (see Exercise 1.3-
13), the player wins $1 with probability 0.49293 and loses
$1 with probability 0.50707 for each $1 bet. What is the
expected value of the game to the player?

2.2-12. Suppose that a school has 20 classes: 16 with 25
students in each, three with 100 students in each, and one
with 300 students, for a total of 1000 students.

(a) What is the average class size?

(b) Select a student randomly out of the 1000 students.
Let the random variable X equal the size of the class
to which this student belongs, and define the pmf of
X.

(c) Find E(X), the expected value of X. Does this answer
surprise you?

2.3 SPECIAL MATHEMATICAL EXPECTATIONS
Let us consider an example in which x ∈ {1, 2, 3} and the pmf is given by f (1) =
3/6, f (2) = 2/6, f (3) = 1/6. That is, the probability that the random variable X
equals 1, denoted by P(X = 1), is f (1) = 3/6. Likewise, P(X = 2) = f (2) = 2/6
and P(X = 3) = f (3) = 1/6. Of course, f (x) > 0 when x ∈ S, and it must be the
case that ∑

x∈S

f (x) = f (1) + f (2) + f (3) = 1.

We can think of the points 1, 2, 3 as having weights (probabilities) 3/6, 2/6, 1/6, and
their weighted mean (weighted average) is

μ = E(X) = 1 · 3
6

+ 2 · 2
6

+ 3 · 1
6

= 10
6

= 5
3

,

which, in this illustration, does not equal one of the x values in S. As a matter of fact,
it is two thirds of the way between x = 1 and x = 2.

In Section 2.2 we called μ = E(X) the mean of the random variable X
(or of its distribution). In general, suppose the random variable X has the space
S = {u1, u2, . . . , uk} and these points have respective probabilities P(X = ui) =
f (ui) > 0, where f (x) is the pmf. Of course,∑

x∈S

f (x) = 1

and the mean of the random variable X (or of its distribution) is

μ =
∑
x∈S

xf (x) = u1f (u1) + u2f (u2) + · · · + ukf (uk).

That is, in the notation of Section 2.2, μ = E(X).
Now, ui is the distance of that ith point from the origin. In mechanics, the product

of a distance and its weight is called a moment, so uif (ui) is a moment having a
moment arm of length ui. The sum of such products would be the moment of the
system of distances and weights. Actually, it is called the first moment about the
origin, since the distances are simply to the first power and the lengths of the arms
(distances) are measured from the origin. However, if we compute the first moment
about the mean μ, then, since here a moment arm equals (x − μ), we have∑

x∈S

(x − μ)f (x) = E[(X − μ)] = E(X) − E(μ)

= μ − μ = 0.
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That is, that first moment about μ is equal to zero. In mechanics μ is called the
centroid. The last equation implies that if a fulcrum is placed at the centroid μ, then
the system of weights would balance, as the sum of the positive moments (when
x > μ) about μ equals the sum of the negative moments (when x < μ). In our first
illustration, μ = 10/6 is the centroid, so the negative moment(

1 − 10
6

)
· 3

6
= −12

36
= −1

3

equals the sum of the two positive moments(
2 − 10

6

)
· 2

6
+

(
3 − 10

6

)
· 1

6
= 12

36
= 1

3
.

Since μ = E(X), it follows from Example 2.2-4 that b=μ minimizes E[(X−b)2].
Also, Example 2.2-5 shows that

μ = n
(

N1

N

)
is the mean of the hypergeometric distribution. Moreover, μ = 1/p is the mean of
the geometric distribution from Example 2.2-6.

Statisticians often find it valuable to compute the second moment about the
mean μ. It is called the second moment because the distances are raised to the
second power, and it is equal to E[(X − μ)2]; that is,∑

x∈S

(x − μ)2f (x) = (u1 − μ)2f (u1) + (u2 − μ)2f (u2) + · · · + (uk − μ)2f (uk).

This weighted mean of the squares of those distances is called the variance of the
random variable X (or of its distribution). The positive square root of the variance
is called the standard deviation of X and is denoted by the Greek letter σ (sigma).
Thus, the variance is σ 2, sometimes denoted by Var(X). That is, σ 2 = E[(X −μ)2] =
Var(X). In our first illustration, since μ = 10/6, the variance equals

σ 2 = Var(X) =
(

1 − 10
6

)2

· 3
6

+
(

2 − 10
6

)2

· 2
6

+
(

3 − 10
6

)2

· 1
6

= 120
216

= 5
9

.

Hence, the standard deviation is

σ =
√

σ 2 =
√

120
216

= 0.745.

It is worth noting that the variance can be computed in another way, because

σ 2 = E[(X − μ)2] = E[X2 − 2μX + μ2]

= E(X2) − 2μE(X) + μ2

= E(X2) − μ2.

That is, the variance σ 2 equals the difference of the second moment about the origin
and the square of the mean. For our first illustration,

σ 2 =
3∑

x=1

x2f (x) − μ2

= 12
(

3
6

)
+ 22

(
2
6

)
+ 32

(
1
6

)
−

(
10
6

)2

= 20
6

− 100
36

= 120
216

= 5
9

,

which agrees with our previous computation.
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Example
2.3-1

Let X equal the number of spots on the side facing upward after a fair six-sided die
is rolled. A reasonable probability model is given by the pmf

f (x) = P(X = x) = 1
6

, x = 1, 2, 3, 4, 5, 6.

The mean of X is

μ = E(X) =
6∑

x=1

x
(

1
6

)
= 1 + 2 + 3 + 4 + 5 + 6

6
= 7

2
.

The second moment about the origin is

E(X2) =
6∑

x=1

x2
(

1
6

)
= 12 + 22 + 32 + 42 + 52 + 62

6
= 91

6
.

Thus, the variance equals

σ 2 = 91
6

−
(

7
2

)2

= 182 − 147
12

= 35
12

.

The standard deviation is σ = √
35/12 = 1.708.

Although most students understand that μ = E(X) is, in some sense, a measure
of the middle of the distribution of X, it is more difficult to get much of a feeling
for the variance and the standard deviation. The next example illustrates that the
standard deviation is a measure of the dispersion, or spread, of the points belonging
to the space S.

Example
2.3-2

Let X have the pmf f (x) = 1/3, x = −1, 0, 1. Here the mean is

μ =
1∑

x=−1

xf (x) = (−1)
(

1
3

)
+ (0)

(
1
3

)
+ (1)

(
1
3

)
= 0.

Accordingly, the variance, denoted by σ 2
X , is

σ 2
X = E[(X − 0)2]

=
1∑

x=−1

x2f (x)

= (−1)2
(

1
3

)
+ (0)2

(
1
3

)
+ (1)2

(
1
3

)
= 2

3
,

so the standard deviation is σX = √
2/3. Next, let another random variable Y have

the pmf g(y) = 1/3, y = −2, 0, 2. Its mean is also zero, and it is easy to show that
Var(Y) = 8/3, so the standard deviation of Y is σY = 2

√
2/3. Here the standard

deviation of Y is twice that of the standard deviation of X, reflecting the fact that
the probability of Y is spread out twice as much as that of X.



Section 2.3 Special Mathematical Expectations 59

Example
2.3-3

Let X have a uniform distribution on the first m positive integers. The mean of X is

μ = E(X) =
m∑

x=1

x
(

1
m

)
= 1

m

m∑
x=1

x

=
(

1
m

)
m(m + 1)

2
= m + 1

2
.

To find the variance of X, we first find

E(X2) =
m∑

x=1

x2
(

1
m

)
= 1

m

m∑
x=1

x2

=
(

1
m

)
m(m + 1)(2m + 1)

6
= (m + 1)(2m + 1)

6
.

Thus, the variance of X is

σ 2 = Var(X) = E[(X − μ)2]

= E(X2) − μ2 = (m + 1)(2m + 1)
6

−
(

m + 1
2

)2

= m2 − 1
12

.

For example, we find that if X equals the outcome when rolling a fair six-sided
die, the pmf of X is

f (x) = 1
6

, x = 1, 2, 3, 4, 5, 6;

the respective mean and variance of X are

μ = 6 + 1
2

= 3.5 and σ 2 = 62 − 1
12

= 35
12

,

which agrees with calculations of Example 2.3-1.

Now let X be a random variable with mean μX and variance σ 2
X . Of course,

Y = aX +b, where a and b are constants, is a random variable, too. The mean of Y is

μY = E(Y) = E(aX + b) = aE(X) + b = aμX + b.

Moreover, the variance of Y is

σ 2
Y = E[(Y − μY)2] = E[(aX + b − aμX − b)2] = E[a2(X − μX)2] = a2σ 2

X .

Thus, σY = |a|σX . To illustrate, note in Example 2.3-2 that the relationship
between the two distributions could be explained by defining Y = 2X, so that
σ 2

Y = 4σ 2
X and consequently σY = 2σX , which we had observed there. In addition,

we see that adding or subtracting a constant from X does not change the variance.
For illustration, Var(X − 1) = Var(X), because a = 1 and b = −1. Also note that
Var(−X) = Var(X) because here a = −1 and b = 0.

Let r be a positive integer. If

E(Xr) =
∑
x∈S

xrf (x)
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is finite, it is called the rth moment of the distribution about the origin. In addition,
the expectation

E[(X − b)r] =
∑
x∈S

(x − b)rf (x)

is called the rth moment of the distribution about b.
For a given positive integer r,

E[(X)r] = E[X(X − 1)(X − 2) · · · (X − r + 1)]

is called the rth factorial moment. We note that the second factorial moment is equal
to the difference of the second and first moments about 0:

E[X(X − 1)] = E(X2) − E(X).

There is another formula that can be used to compute the variance. This formula
uses the second factorial moment and sometimes simplifies the calculations. First
find the values of E(X) and E[X(X − 1)]. Then

σ 2 = E[X(X − 1)] + E(X) − [E(X)]2,

since, by the distributive property of E, this becomes

σ 2 = E(X2) − E(X) + E(X) − [E(X)]2 = E(X2) − μ2.

Example
2.3-4

In Example 2.2-5 concerning the hypergeometric distribution, we found that the
mean of that distribution is

μ = E(X) = n
(

N1

N

)
= np,

where p = N1/N, the fraction of red chips in the N chips. In Exercise 2.3-10, it is
determined that

E[X(X − 1)] = (n)(n − 1)(N1)(N1 − 1)
N(N − 1)

.

Thus, the variance of X is E[X(X − 1)] + E(X) − [E(X)]2, namely,

σ 2 = n(n − 1)(N1)(N1 − 1)
N(N − 1)

+ nN1

N
−

(
nN1

N

)2

.

After some straightforward algebra, we find that

σ 2 = n
(

N1

N

)(
N2

N

)(
N − n
N − 1

)
= np(1 − p)

(
N − n
N − 1

)
.

We now define a function that will help us generate the moments of a dis-
tribution. Thus, this function is called the moment-generating function. Although
this generating characteristic is extremely important, there is a uniqueness property
that is even more important. We first define the new function and then explain this
uniqueness property before showing how it can be used to compute the moments
of X.
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Definition 2.3-1
Let X be a random variable of the discrete type with pmf f (x) and space S. If
there is a positive number h such that

E(etX) =
∑
x∈S

etxf (x)

exists and is finite for −h < t < h, then the function defined by

M(t) = E(etX)

is called the moment-generating function of X (or of the distribution of X). This
function is often abbreviated as mgf.

First, it is evident that if we set t = 0, we have M(0) = 1. Moreover, if the space
of S is {b1, b2, b3, . . .}, then the moment-generating function is given by the expansion

M(t) = etb1f (b1) + etb2 f (b2) + etb3 f (b3) + · · · .

Thus, the coefficient of etbi is the probability

f (bi) = P(X = bi).

Accordingly, if two random variables (or two distributions of probability) have the
same moment-generating function, they must have the same distribution of proba-
bility. That is, if the two random variables had the two probability mass functions
f (x) and g(y), as well as the same space S = {b1, b2, b3, . . .}, and if

etb1 f (b1) + etb2 f (b2) + · · · = etb1 g(b1) + etb2 g(b2) + · · · (2.3-1)

for all t, −h < t < h, then mathematical transform theory requires that

f (bi) = g(bi), i = 1, 2, 3, . . . .

So we see that the moment-generating function of a discrete random variable
uniquely determines the distribution of that random variable. In other words, if
the mgf exists, there is one and only one distribution of probability associated with
that mgf.

REMARK From elementary algebra, we can get some understanding of why
Equation 2.3-1 requires that f (bi) = g(bi). In that equation, let et = w and say the
points in the support, namely, b1, b2, . . . , bk, are positive integers, the largest of which
is m. Then Equation 2.3-1 provides the equality of two mth-degree polynomials in
w for an uncountable number of values of w. A fundamental theorem of algebra
requires that the corresponding coefficients of the two polynomials be equal; that is,
f (bi) = g(bi), i = 1, 2, . . . , k.

Example
2.3-5

If X has the mgf

M(t) = et
(

3
6

)
+ e2t

(
2
6

)
+ e3t

(
1
6

)
, −∞ < t < ∞,

then the support of X is S = {1, 2, 3} and the associated probabilities are

P(X = 1) = 3
6

, P(X = 2) = 2
6

, P(X = 3) = 1
6

.
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We could write this, if we choose to do so, by saying that X has the pmf

f (x) = 4 − x
6

, x = 1, 2, 3.

Example
2.3-6

Suppose the mgf of X is

M(t) = et/2
1 − et/2

, t < ln 2.

Until we expand M(t), we cannot detect the coefficients of ebit. Recalling that

(1 − z)−1 = 1 + z + z2 + z3 + · · · , −1 < z < 1,

we have

et

2

(
1 − et

2

)−1

= et

2

(
1 + et

2
+ e2t

22
+ e3t

23
+ · · ·

)

= (
et)(1

2

)1

+
(

e2t
)(1

2

)2

+
(

e3t
)(1

2

)3

+ · · ·

when et/2 < 1 and thus t < ln 2. That is,

P(X = x) =
(

1
2

)x

when x is a positive integer, or, equivalently, the pmf of X is

f (x) =
(

1
2

)x

, x = 1, 2, 3, . . . .

From the theory of Laplace transforms, it can be shown that the existence of
M(t), for −h < t < h, implies that derivatives of M(t) of all orders exist at t =
0; hence, M(t) is continuous at t = 0. Moreover, it is permissible to interchange
differentiation and summation as the series converges uniformly. Thus,

M′(t) =
∑
x∈S

xetxf (x),

M′′(t) =
∑
x∈S

x2etxf (x),

and for each positive integer r,

M(r)(t) =
∑
x∈S

xretxf (x).

Setting t = 0, we see that

M′(0) =
∑
x∈S

xf (x) = E(X),

M′′(0) =
∑
x∈S

x2f (x) = E(X2),
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and, in general,

M(r)(0) =
∑
x∈S

xrf (x) = E(Xr).

In particular, if the moment-generating function exists, then

M′(0) = E(X) = μ and M′′(0) − [M′(0)]2 = E(X2) − [E(X)]2 = σ 2.

The preceding argument shows that we can find the moments of X by differen-
tiating M(t). In using this technique, it must be emphasized that first we evaluate the
summation representing M(t) to obtain a closed-form solution and then we differ-
entiate that solution to obtain the moments of X. The next example illustrates the
use of the moment-generating function for finding the first and second moments and
then the mean and variance of the geometric distribution.

Example
2.3-7

Suppose X has the geometric distribution of Example 2.2-6; that is, the pmf of X is

f (x) = qx−1p, x = 1, 2, 3, . . . .

Then the mgf of X is

M(t) = E(etX) =
∞∑

x=1

etxqx−1p =
(

p
q

) ∞∑
x=1

(qet)x

=
(

p
q

)
[(qet) + (qet)2 + (qet)3 + · · · ]

=
(

p
q

)
qet

1 − qet = pet

1 − qet , provided qet < 1 or t < − ln q.

Note that − ln q = h is positive. To find the mean and the variance of X, we first
differentiate M(t) twice:

M′(t) = (1 − qet)(pet) − pet(−qet)
(1 − qet)2

= pet

(1 − qet)2

and

M′′(t) = (1 − qet)2pet − pet(2)(1 − qet)(−qet)
(1 − qet)4

= pet(1 + qet)
(1 − qet)3

.

Of course, M(0) = 1 and M(t) is continuous at t = 0 as we were able to differentiate
at t = 0. With 1 − q = p,

M′(0) = p
(1 − q)2

= 1
p

= μ

and

M′′(0) = p(1 + q)
(1 − q)3

= 1 + q
p2

.

Thus,

σ 2 = M′′(0) − [M′(0)]2 = 1 + q
p2

− 1
p2

= q
p2

.
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Exercises

2.3-1. Find the mean and variance for the following dis-
crete distributions:

(a) f (x) = 1
5

, x = 5, 10, 15, 20, 25.

(b) f (x) = 1, x = 5.

(c) f (x) = 4 − x
6

, x = 1, 2, 3.

2.3-2. For each of the following distributions, find μ =
E(X), E[X(X −1)], and σ 2 = E[X(X −1)]+E(X)−μ2:

(a) f (x) = 3!
x!(3 − x)!

(
1
4

)x(3
4

)3−x

, x = 0, 1, 2, 3.

(b) f (x) = 4!
x!(4 − x)!

(
1
2

)4

, x = 0, 1, 2, 3, 4.

2.3-3. Given E(X + 4) = 10 and E[(X + 4)2] = 116,
determine (a) Var(X + 4), (b) μ = E(X), and (c) σ 2 =
Var(X).

2.3-4. Let μ and σ 2 denote the mean and variance of
the random variable X. Determine E[(X − μ)/σ ] and
E{[(X − μ)/σ ]2}.
2.3-5. Consider an experiment that consists of selecting
a card at random from an ordinary deck of cards. Let
the random variable X equal the value of the selected
card, where Ace = 1, Jack = 11, Queen = 12, and
King = 13. Thus, the space of X is S = {1, 2, 3, . . . , 13}.
If the experiment is performed in an unbiased manner,
assign probabilities to these 13 outcomes and compute the
mean μ of this probability distribution.

2.3-6. Place eight chips in a bowl: Three have the num-
ber 1 on them, two have the number 2, and three have
the number 3. Say each chip has a probability of 1/8
of being drawn at random. Let the random variable X
equal the number on the chip that is selected, so that the
space of X is S = {1, 2, 3}. Make reasonable probability
assignments to each of these three outcomes, and com-
pute the mean μ and the variance σ 2 of this probability
distribution.

2.3-7. Let X equal an integer selected at random from the
first m positive integers, {1, 2, . . . , m}. Find the value of m
for which E(X) = Var(X). (See Zerger in the references.)

2.3-8. Let X equal the larger outcome when a pair of fair
four-sided dice is rolled. The pmf of X is

f (x) = 2x − 1
16

, x = 1, 2, 3, 4.

Find the mean, variance, and standard deviation of X.

2.3-9. A warranty is written on a product worth $10,000
so that the buyer is given $8000 if it fails in the first year,

$6000 if it fails in the second, $4000 if it fails in the third,
$2000 if it fails in the fourth, and zero after that. The prob-
ability that the product fails in the first year is 0.1, and the
probability that it fails in any subsequent year, provided
that it did not fail prior to that year, is 0.1. What is the
expected value of the warranty?

2.3-10. To find the variance of a hypergeometric random
variable in Example 2.3-4 we used the fact that

E[X(X − 1)] = N1(N1 − 1)(n)(n − 1)
N(N − 1)

.

Prove this result by making the change of variables
k = x − 2 and noting that(

N
n

)
= N(N − 1)

n(n − 1)

(
N − 2
n − 2

)
.

2.3-11. If the moment-generating function of X is

M(t) = 2
5

et + 1
5

e2t + 2
5

e3t,

find the mean, variance, and pmf of X.

2.3-12. Let X equal the number of people selected at ran-
dom that you must ask in order to find someone with the
same birthday as yours. Assume that each day of the year
is equally likely, and ignore February 29.

(a) What is the pmf of X?

(b) Give the values of the mean, variance, and standard
deviation of X.

(c) Find P(X > 400) and P(X < 300).

2.3-13. For each question on a multiple-choice test, there
are five possible answers, of which exactly one is cor-
rect. If a student selects answers at random, give the
probability that the first question answered correctly is
question 4.

2.3-14. The probability that a machine produces a defec-
tive item is 0.01. Each item is checked as it is produced.
Assume that these are independent trials, and compute
the probability that at least 100 items must be checked to
find one that is defective.

2.3-15. Apples are packaged automatically in 3-pound
bags. Suppose that 4% of the time the bag of apples
weighs less than 3 pounds. If you select bags randomly
and weigh them in order to discover one underweight bag
of apples, find the probability that the number of bags that
must be selected is

(a) At least 20.

(b) At most 20.

(c) Exactly 20.
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2.3-16. Let X equal the number of flips of a fair coin
that are required to observe the same face on consecutive
flips.

(a) Find the pmf of X. Hint: Draw a tree diagram.

(b) Find the moment-generating function of X.

(c) Use the mgf to find the values of (i) the mean and (ii)
the variance of X.

(d) Find the values of (i) P(X ≤ 3), (ii) P(X ≥ 5), and
(iii) P(X = 3).

2.3-17. Let X equal the number of flips of a fair coin that
are required to observe heads–tails on consecutive flips.

(a) Find the pmf of X. Hint: Draw a tree diagram.

(b) Show that the mgf of X is M(t) = e2t/(et − 2)2.

(c) Use the mgf to find the values of (i) the mean and (ii)
the variance of X.

(d) Find the values of (i) P(X ≤ 3), (ii) P(X ≥ 5), and
(iii) P(X = 3).

2.3-18. Let X have a geometric distribution. Show that

P(X > k + j | X > k) = P(X > j),

where k and j are nonnegative integers. Note: We some-
times say that in this situation there has been loss of
memory.

2.3-19. Given a random permutation of the integers in
the set {1, 2, 3, 4, 5}, let X equal the number of integers
that are in their natural position. The moment-generating
function of X is

M(t) = 44
120

+ 45
120

et + 20
120

e2t + 10
120

e3t + 1
120

e5t.

(a) Find the mean and variance of X.

(b) Find the probability that at least one integer is in its
natural position.

(c) Draw a graph of the probability histogram of the pmf
of X.

2.4 THE BINOMIAL DISTRIBUTION
The probability models for random experiments that will be described in this section
occur frequently in applications.

A Bernoulli experiment is a random experiment, the outcome of which can be
classified in one of two mutually exclusive and exhaustive ways—say, success or fail-
ure (e.g., female or male, life or death, nondefective or defective). A sequence of
Bernoulli trials occurs when a Bernoulli experiment is performed several indepen-
dent times and the probability of success—say, p—remains the same from trial to
trial. That is, in such a sequence we let p denote the probability of success on each
trial. In addition, we shall frequently let q = 1 − p denote the probability of failure;
that is, we shall use q and 1 − p interchangeably.

Example
2.4-1

Suppose that the probability of germination of a beet seed is 0.8 and the germination
of a seed is called a success. If we plant 10 seeds and can assume that the germi-
nation of one seed is independent of the germination of another seed, this would
correspond to 10 Bernoulli trials with p = 0.8.

Example
2.4-2

In the Michigan daily lottery the probability of winning when placing a six-way
boxed bet is 0.006. A bet placed on each of 12 successive days would correspond
to 12 Bernoulli trials with p = 0.006.

Let X be a random variable associated with a Bernoulli trial by defining it as
follows:

X (success) = 1 and X (failure) = 0.

That is, the two outcomes, success and failure, are denoted by one and zero,
respectively. The pmf of X can be written as

f (x) = px(1 − p)1−x, x = 0, 1,
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and we say that X has a Bernoulli distribution. The expected value of X is

μ = E(X) =
1∑

x=0

x px(1 − p)1−x = (0)(1 − p) + (1)(p) = p,

and the variance of X is

σ 2 = Var(X) =
1∑

x=0

(x − p)2px(1 − p)1−x

= (0 − p)2(1 − p) + (1 − p)2p = p(1 − p) = pq.

It follows that the standard deviation of X is

σ =
√

p(1 − p) = √
pq.

In a sequence of n Bernoulli trials, we shall let Xi denote the Bernoulli random
variable associated with the ith trial. An observed sequence of n Bernoulli trials will
then be an n-tuple of zeros and ones, and we often call this collection a random
sample of size n from a Bernoulli distribution.

Example
2.4-3

Out of millions of instant lottery tickets, suppose that 20% are winners. If five such
tickets are purchased, then (0, 0, 0, 1, 0) is a possible observed sequence in which
the fourth ticket is a winner and the other four are losers. Assuming indepen-
dence among winning and losing tickets, we observe that the probability of this
outcome is

(0.8)(0.8)(0.8)(0.2)(0.8) = (0.2)(0.8)4.

Example
2.4-4

If five beet seeds are planted in a row, a possible observed sequence would be
(1, 0, 1, 0, 1) in which the first, third, and fifth seeds germinated and the other two
did not. If the probability of germination is p = 0.8, the probability of this outcome
is, assuming independence,

(0.8)(0.2)(0.8)(0.2)(0.8) = (0.8)3(0.2)2.

In a sequence of Bernoulli trials, we are often interested in the total number of
successes but not the actual order of their occurrences. If we let the random variable
X equal the number of observed successes in n Bernoulli trials, then the possible
values of X are 0, 1, 2, . . . , n. If x successes occur, where x = 0, 1, 2, . . . , n, then n − x
failures occur. The number of ways of selecting x positions for the x successes in the
n trials is (

n
x

)
= n!

x!(n − x)! .

Since the trials are independent and since the probabilities of success and failure on
each trial are, respectively, p and q = 1 − p, the probability of each of these ways
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is px(1 − p)n−x. Thus, f (x), the pmf of X, is the sum of the probabilities of the
(

n
x

)
mutually exclusive events; that is,

f (x) =
(

n
x

)
px(1 − p)n−x, x = 0, 1, 2, . . . , n.

These probabilities are called binomial probabilities, and the random variable X is
said to have a binomial distribution.

Summarizing, a binomial experiment satisfies the following properties:

1. A Bernoulli (success–failure) experiment is performed n times, where n is a
(non-random) constant.

2. The trials are independent.

3. The probability of success on each trial is a constant p; the probability of failure
is q = 1 − p.

4. The random variable X equals the number of successes in the n trials.

A binomial distribution will be denoted by the symbol b(n, p), and we say that
the distribution of X is b(n, p). The constants n and p are called the parameters of
the binomial distribution; they correspond to the number n of independent trials and
the probability p of success on each trial. Thus, if we say that the distribution of X
is b(12, 1/4), we mean that X is the number of successes in a random sample of size
n = 12 from a Bernoulli distribution with p = 1/4.

Example
2.4-5

In the instant lottery with 20% winning tickets, if X is equal to the number of winning
tickets among n = 8 that are purchased, then the probability of purchasing two
winning tickets is

f (2) = P(X = 2) =
(

8
2

)
(0.2)2(0.8)6 = 0.2936.

The distribution of the random variable X is b(8, 0.2).

Example
2.4-6

In order to obtain a better feeling for the effect of the parameters n and p
on the distribution of probabilities, four probability histograms are displayed in
Figure 2.4-1.

Example
2.4-7

In Example 2.4-1, the number X of seeds that germinate in n = 10 independent trials
is b(10, 0.8); that is,

f (x) =
(

10
x

)
(0.8)x(0.2)10−x, x = 0, 1, 2, . . . , 10.

In particular,

P(X ≤ 8) = 1 − P(X = 9) − P(X = 10)

= 1 − 10(0.8)9(0.2) − (0.8)10 = 0.6242.

Also, with a little more work, we could compute

P(X ≤ 6) =
6∑

x=0

(
10
x

)
(0.8)x(0.2)10−x = 0.1209.
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Figure 2.4-1 Binomial probability histograms

Recall that cumulative probabilities like those in the previous example are
given by the cumulative distribution function (cdf) of X or sometimes called the
distribution function (df) of X, defined by

F(x) = P(X ≤ x), −∞ < x < ∞.

We tend to use the cdf (rather than the pmf) to obtain probabilities of events involv-
ing a b(n, p) random variable X. Tables of this cdf are given in Table II in Appendix B
for selected values of n and p.

For the binomial distribution given in Example 2.4-7, namely, the b(10, 0.8)
distribution, the distribution function is defined by

F(x) = P(X ≤ x) =
�x�∑
y=0

(
10
y

)
(0.8)y(0.2)10−y,

where �x� is the greatest integer in x. A graph of this cdf is shown in Figure 2.4-2.
Note that the vertical jumps at the integers in this step function are equal to the
probabilities associated with those respective integers.

Example
2.4-8

Leghorn chickens are raised for laying eggs. Let p = 0.5 be the probability that a
newly hatched chick is a female. Assuming independence, let X equal the number
of female chicks out of 10 newly hatched chicks selected at random. Then the distri-
bution of X is b(10, 0.5). From Table II in Appendix B, the probability of 5 or fewer
female chicks is

P(X ≤ 5) = 0.6230.
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Figure 2.4-2 Distribution function for the b(10, 0.8)
distribution

The probability of exactly 6 female chicks is

P(X = 6) =
(

10
6

)(
1
2

)6(1
2

)4

= P(X ≤ 6) − P(X ≤ 5)

= 0.8281 − 0.6230 = 0.2051,

since P(X ≤ 6) = 0.8281. The probability of at least 6 female chicks is

P(X ≥ 6) = 1 − P(X ≤ 5) = 1 − 0.6230 = 0.3770.

Although probabilities for the binomial distribution b(n, p) are given in Table
II in Appendix B for selected values of p that are less than or equal to 0.5, the next
example demonstrates that this table can also be used for values of p that are greater
than 0.5. In later sections we learn how to approximate certain binomial probabilities
with those of other distributions. In addition, you may use your calculator and/or a
statistical package such as Minitab to find binomial probabilities.

Example
2.4-9

Suppose that we are in one of those rare times when 65% of the American public
approve of the way the president of the United States is handling the job. Take a
random sample of n = 8 Americans and let Y equal the number who give approval.
Then, to a very good approximation, the distribution of Y is b(8, 0.65). (Y would
have the stated distribution exactly if the sampling were done with replacement, but
most public opinion polling uses sampling without replacement.) To find P(Y ≥ 6),
note that

P(Y ≥ 6) = P(8 − Y ≤ 8 − 6) = P(X ≤ 2),

where X = 8 − Y counts the number who disapprove. Since q = 1 − p = 0.35
equals the probability of disapproval by each person selected, the distribution of X is
b(8, 0.35). (See Figure 2.4-3.) From Table II in Appendix B, since P(X ≤ 2) = 0.4278,
it follows that P(Y ≥ 6) = 0.4278.
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Figure 2.4-3 Presidential approval histogram

Similarly,

P(Y ≤ 5) = P(8 − Y ≥ 8 − 5)

= P(X ≥ 3) = 1 − P(X ≤ 2)

= 1 − 0.4278 = 0.5722

and

P(Y = 5) = P(8 − Y = 8 − 5)

= P(X = 3) = P(X ≤ 3) − P(X ≤ 2)

= 0.7064 − 0.4278 = 0.2786.

Recall that if n is a positive integer, then

(a + b)n =
n∑

x=0

(
n
x

)
bxan−x.

Thus, if we use this binomial expansion with b = p and a = 1 − p, then the sum of
the binomial probabilities is

n∑
x=0

(
n
x

)
px(1 − p)n−x = [(1 − p) + p]n = 1,

a result that had to follow from the fact that f (x) is a pmf.
We now use the binomial expansion to find the mgf for a binomial random

variable and then the mean and variance.
The mgf is

M(t) = E(etX) =
n∑

x=0

etx
(

n
x

)
px(1 − p)n−x

=
n∑

x=0

(
n
x

)
(pet)x(1 − p)n−x

= [
(1 − p) + pet]n , −∞ < t < ∞,
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from the expansion of (a + b)n with a = 1 − p and b = pet. It is interesting to note
that here and elsewhere the mgf is usually rather easy to compute if the pmf has a
factor involving an exponential, like px in the binomial pmf.

The first two derivatives of M(t) are

M′(t) = n[(1 − p) + pet]n−1(pet)

and

M′′(t) = n(n − 1)[(1 − p) + pet]n−2(pet)2 + n[(1 − p) + pet]n−1(pet).

Thus,

μ = E(X) = M′(0) = np

and

σ 2 = E(X2) − [E(X)]2 = M′′(0) − [M′(0)]2

= n(n − 1)p2 + np − (np)2 = np(1 − p).

Note that when p is the probability of success on each trial, the expected number of
successes in n trials is np, a result that agrees with our intuition.

In the special case when n = 1, X has a Bernoulli distribution and

M(t) = (1 − p) + pet

for all real values of t, μ = p, and σ 2 = p(1 − p).

Example
2.4-10

Suppose that observation over a long period of time has disclosed that, on the
average, 1 out of 10 items produced by a process is defective. Select five items
independently from the production line and test them. Let X denote the number
of defective items among the n = 5 items. Then X is b(5, 0.1). Furthermore,

E(X) = 5(0.1) = 0.5, Var(X) = 5(0.1)(0.9) = 0.45.

For example, the probability of observing at most one defective item is

P(X ≤ 1) =
(

5
0

)
(0.1)0(0.9)5 +

(
5
1

)
(0.1)1(0.9)4 = 0.9185.

Suppose that an urn contains N1 success balls and N2 failure balls. Let
p = N1/(N1 + N2), and let X equal the number of success balls in a random sam-
ple of size n that is taken from this urn. If the sampling is done one at a time with
replacement, then the distribution of X is b(n, p); if the sampling is done without
replacement, then X has a hypergeometric distribution with pmf

f (x) =

(
N1

x

)(
N2

n − x

)
(

N1 + N2

n

) ,

where x is a nonnegative integer such that x ≤ n, x ≤ N1, and n − x ≤ N2. When
N1 + N2 is large and n is relatively small, it makes little difference if the sampling
is done with or without replacement. In Figure 2.4-4, the probability histograms are
compared for different combinations of n, N1, and N2.
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f(x)

b(8, 0.20); N1 = 8, N2 = 32, n = 8 b(8, 0.20); N1 = 16, N2 = 64, n = 8

b(16, 0.20); N1 = 16, N2 = 64, n = 16 b(16, 0.20); N1 = 32, N2 = 128, n = 16
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Figure 2.4-4 Binomial and hypergeometric (shaded) probability histograms

Exercises

2.4-1. An urn contains 7 red and 11 white balls. Draw one
ball at random from the urn. Let X = 1 if a red ball is
drawn, and let X = 0 if a white ball is drawn. Give the
pmf, mean, and variance of X.

2.4-2. Suppose that in Exercise 2.4-1, X = 1 if a red ball
is drawn and X = −1 if a white ball is drawn. Give the
pmf, mean, and variance of X.

2.4-3. On a six-question multiple-choice test there are
five possible answers for each question, of which one is
correct (C) and four are incorrect (I). If a student guesses
randomly and independently, find the probability of

(a) Being correct only on questions 1 and 4 (i.e., scoring
C, I, I, C, I, I).

(b) Being correct on two questions.

2.4-4. It is claimed that 15% of the ducks in a partic-
ular region have patent schistosome infection. Suppose
that seven ducks are selected at random. Let X equal the
number of ducks that are infected.

(a) Assuming independence, how is X distributed?

(b) Find (i) P(X ≥ 2), (ii) P(X = 1), and (iii) P(X ≤ 3).

2.4-5. In a lab experiment involving inorganic syntheses
of molecular precursors to organometallic ceramics, the

final step of a five-step reaction involves the formation
of a metal–metal bond. The probability of such a bond
forming is p = 0.20. Let X equal the number of successful
reactions out of n = 25 such experiments.

(a) Find the probability that X is at most 4.

(b) Find the probability that X is at least 5.

(c) Find the probability that X is equal to 6.

(d) Give the mean, variance, and standard deviation of X.

2.4-6. It is believed that approximately 75% of American
youth now have insurance due to the health care law.
Suppose this is true, and let X equal the number of
American youth in a random sample of n = 15 with
private health insurance.

(a) How is X distributed?

(b) Find the probability that X is at least 10.

(c) Find the probability that X is at most 10.

(d) Find the probability that X is equal to 10.

(e) Give the mean, variance, and standard deviation of X.

2.4-7. Suppose that 2000 points are selected indepen-
dently and at random from the unit square {(x, y) : 0 ≤
x < 1, 0 ≤ y < 1}. Let W equal the number of points that
fall into A = {(x, y) : x2 + y2 < 1}.
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(a) How is W distributed?

(b) Give the mean, variance, and standard deviation of W.

(c) What is the expected value of W/500?

(d) Use the computer to select 2000 pairs of random num-
bers. Determine the value of W and use that value to
find an estimate for π . (Of course, we know the real
value of π , and more will be said about estimation
later in this text.)

(e) How could you extend part (d) to estimate the volume
V = (4/3)π of a ball of radius 1 in 3-space?

(f) How could you extend these techniques to estimate
the “volume” of a ball of radius 1 in n-space?

2.4-8. A boiler has four relief valves. The probability that
each opens properly is 0.99.

(a) Find the probability that at least one opens properly.

(b) Find the probability that all four open properly.

2.4-9. Suppose that the percentage of American drivers
who are multitaskers (e.g., talk on cell phones, eat a
snack, or text message at the same time they are driv-
ing) is approximately 80%. In a random sample of n = 20
drivers, let X equal the number of multitaskers.

(a) How is X distributed?

(b) Give the values of the mean, variance, and standard
deviation of X.

(c) Find the following probabilities: (i) P(X = 15),
(ii) P(X > 15), and (iii) P(X ≤ 15).

2.4-10. A certain type of mint has a label weight of 20.4
grams. Suppose that the probability is 0.90 that a mint
weighs more than 20.7 grams. Let X equal the number
of mints that weigh more than 20.7 grams in a sample of
eight mints selected at random.

(a) How is X distributed if we assume independence?

(b) Find (i) P(X = 8), (ii) P(X ≤ 6), and (iii) P(X ≥ 6).

2.4-11. A random variable X has a binomial distribution
with mean 6 and variance 3.6. Find P(X = 4).

2.4-12. In the casino game chuck-a-luck, three fair six-
sided dice are rolled. One possible bet is $1 on fives, and
the payoff is equal to $1 for each five on that roll. In addi-
tion, the dollar bet is returned if at least one five is rolled.
The dollar that was bet is lost only if no fives are rolled.
Let X denote the payoff for this game. Then X can equal
−l, l, 2, or 3.

(a) Determine the pmf f (x).

(b) Calculate μ, σ 2, and σ .

(c) Depict the pmf as a probability histogram.

2.4-13. It is claimed that for a particular lottery, 1/10 of
the 50 million tickets will win a prize. What is the proba-
bility of winning at least one prize if you purchase (a) 10
tickets or (b) 15 tickets?

2.4-14. For the lottery described in Exercise 2.4-13, find
the smallest number of tickets that must be purchased so

that the probability of winning at least one prize is greater
than (a) 0.50; (b) 0.95.

2.4-15. A hospital obtains 40% of its flu vaccine from
Company A, 50% from Company B, and 10% from
Company C. From past experience, it is known that 3%
of the vials from A are ineffective, 2% from B are ineffec-
tive, and 5% from C are ineffective. The hospital tests five
vials from each shipment. If at least one of the five is inef-
fective, find the conditional probability of that shipment’s
having come from C.

2.4-16. A company starts a fund of M dollars from which
it pays $1000 to each employee who achieves high perfor-
mance during the year. The probability of each employee
achieving this goal is 0.10 and is independent of the prob-
abilities of the other employees doing so. If there are
n = 10 employees, how much should M equal so that the
fund has a probability of at least 99% of covering those
payments?

2.4-17. Your stockbroker is free to take your calls about
60% of the time; otherwise, he is talking to another client
or is out of the office. You call him at five random times
during a given month. (Assume independence.)

(a) What is the probability that he will take every one of
the five calls?

(b) What is the probability that he will accept exactly
three of your five calls?

(c) What is the probability that he will accept at least one
of the calls?

2.4-18. In group testing for a certain disease, a blood sam-
ple was taken from each of n individuals and part of each
sample was placed in a common pool. The latter was then
tested. If the result was negative, there was no more test-
ing and all n individuals were declared negative with one
test. If, however, the combined result was found positive,
all individuals were tested, requiring n+1 tests. If p = 0.05
is the probability of a person’s having the disease and
n = 5, compute the expected number of tests needed,
assuming independence.

2.4-19. Define the pmf and give the values of μ, σ 2, and
σ when the moment-generating function of X is defined
by

(a) M(t) = 1/3 + (2/3)et.

(b) M(t) = (0.25 + 0.75et)12.

2.4-20. (i) Give the name of the distribution of X (if it has
a name), (ii) find the values of μ and σ 2, and (iii) calcu-
late P(1 ≤ X ≤ 2) when the moment-generating function
of X is given by

(a) M(t) = (0.3 + 0.7et)5.

(b) M(t) = 0.3et

1 − 0.7et , t < − ln(0.7).

(c) M(t) = 0.45 + 0.55et.

(d) M(t) = 0.3et + 0.4e2t + 0.2e3t + 0.1e4t.

(e) M(t) = ∑10
x=1 (0.1)etx.
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2.5 THE NEGATIVE BINOMIAL DISTRIBUTION
We turn now to the situation in which we observe a sequence of independent
Bernoulli trials until exactly r successes occur, where r is a fixed positive integer.
Let the random variable X denote the number of trials needed to observe the rth
success. That is, X is the trial number on which the rth success is observed. By the
multiplication rule of probabilities, the pmf of X—say, g(x)—equals the product of the
probability (

x − 1
r − 1

)
pr−1(1 − p)x−r =

(
x − 1
r − 1

)
pr−1qx−r

of obtaining exactly r − 1 successes in the first x − 1 trials and the probability p of a
success on the rth trial. Thus, the pmf of X is

g(x) =
(

x − 1
r − 1

)
pr(1 − p)x−r =

(
x − 1
r − 1

)
prqx−r, x = r, r + 1, . . . .

We say that X has a negative binomial distribution.

REMARK The reason for calling this distribution the negative binomial distribution
is as follows: Consider h(w) = (1 − w)−r, the binomial (1 − w) with the negative
exponent −r. Using Maclaurin’s series expansion, we have

(1 − w)−r =
∞∑

k=0

h(k)(0)
k! wk =

∞∑
k=0

(
r + k − 1

r − 1

)
wk, −1 < w < 1.

If we let x = k + r in the summation, then k = x − r and

(1 − w)−r =
∞∑

x=r

(
r + x − r − 1

r − 1

)
wx−r =

∞∑
x=r

(
x − 1
r − 1

)
wx−r,

the summand of which is, except for the factor pr, the negative binomial probability
when w = q. In particular, the sum of the probabilities for the negative binomial
distribution is 1 because

∞∑
x=r

g(x) =
∞∑

x=r

(
x − 1
r − 1

)
prqx−r = pr(1 − q)−r = 1.

If r = 1 in the negative binomial distribution, we note that X has a geometric
distribution, since the pmf consists of terms of a geometric series, namely,

g(x) = p(1 − p)x−1, x = 1, 2, 3, . . . .

Recall that for a geometric series, the sum is given by

∞∑
k=0

ark =
∞∑

k=1

ark−1 = a
1 − r

when |r| < 1. Thus, for the geometric distribution,

∞∑
x=1

g(x) =
∞∑

x=1

(1 − p)x−1p = p
1 − (1 − p)

= 1,

so that g(x) does satisfy the properties of a pmf.
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From the sum of a geometric series, we also note that when k is an integer,

P(X > k) =
∞∑

x=k+1

(1 − p)x−1p = (1 − p)kp
1 − (1 − p)

= (1 − p)k = qk.

Thus, the value of the cdf at a positive integer k is

P(X ≤ k) =
k∑

x=1

(1 − p)x−1p = 1 − P(X > k) = 1 − (1 − p)k = 1 − qk.

Example
2.5-1

Some biology students were checking eye color in a large number of fruit flies. For
the individual fly, suppose that the probability of white eyes is 1/4 and the probability
of red eyes is 3/4, and that we may treat these observations as independent Bernoulli
trials. The probability that at least four flies have to be checked for eye color to
observe a white-eyed fly is given by

P(X ≥ 4) = P(X > 3) = q3 =
(

3
4

)3

= 27
64

= 0.4219.

The probability that at most four flies have to be checked for eye color to observe a
white-eyed fly is given by

P(X ≤ 4) = 1 − q4 = 1 −
(

3
4

)4

= 175
256

= 0.6836.

The probability that the first fly with white eyes is the fourth fly considered is

P(X = 4) = q4−1p =
(

3
4

)3(1
4

)
= 27

256
= 0.1055.

It is also true that

P(X = 4) = P(X ≤ 4) − P(X ≤ 3)

= [1 − (3/4)4] − [1 − (3/4)3]

=
(

3
4

)3(1
4

)
.

We now show that the mean and the variance of a negative binomial random
variable X are, respectively,

μ = E(X) = r
p

and σ 2 = rq
p2

= r(1 − p)
p2

.

In particular, if r = 1, so that X has a geometric distribution, then

μ = 1
p

and σ 2 = q
p2

= 1 − p
p2

.

The mean μ = 1/p agrees with our intuition. Let’s check: If p = 1/6, then we would
expect, on the average, 1/(1/6) = 6 trials before the first success.
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To find these moments, we determine the mgf of the negative binomial distribu-
tion. It is

M(t) =
∞∑

x=r

etx
(

x − 1
r − 1

)
pr(1 − p)x−r

= (
pet)r

∞∑
x=r

(
x − 1
r − 1

) [
(1 − p)et]x−r

= (pet)r

[1 − (1 − p)et]r , where (1 − p)et < 1

(or, equivalently, when t < − ln(1 − p)). Thus,

M′(t) = (pet)r(−r)[1 − (1 − p)et]−r−1[−(1 − p)et]

+ r(pet)r−1(pet)[1 − (1 − p)et]−r

= r(pet)r[1 − (1 − p)et]−r−1

and

M′′(t) = r(pet)r(−r − 1)[1 − (1 − p)et]−r−2[−(1 − p)et]

+ r2(pet)r−1(pet)[1 − (1 − p)et]−r−1.

Accordingly,

M′(0) = rprp−r−1 = rp−1

and

M′′(0) = r(r + 1)prp−r−2(1 − p) + r2prp−r−1

= rp−2[(1 − p)(r + 1) + rp] = rp−2(r + 1 − p).

Hence, we have

μ = r
p

and σ 2 = r(r + 1 − p)
p2

− r2

p2
= r(1 − p)

p2
.

Even these calculations are a little messy, so a somewhat easier way is given in
Exercises 2.5-5 and 2.5-6.

Example
2.5-2

Suppose that during practice a basketball player can make a free throw 80% of the
time. Furthermore, assume that a sequence of free-throw shooting can be thought
of as independent Bernoulli trials. Let X equal the minimum number of free throws
that this player must attempt to make a total of 10 shots. The pmf of X is

g(x) =
(

x − 1
10 − 1

)
(0.80)10(0.20)x−10, x = 10, 11, 12, . . . .

The mean, variance, and standard deviation of X are, respectively,

μ = 10
(

1
0.80

)
= 12.5, σ 2 = 10(0.20)

0.802
= 3.125, and σ = 1.768.
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And we have, for example,

P(X = 12) = g(12) =
(

11
9

)
(0.80)10(0.20)2 = 0.2362.

Example
2.5-3

To consider the effect of p and r on the negative binomial distribution, Figure 2.5-1
gives the probability histograms for four combinations of p and r. Note that since
r = 1 in the first of these, it represents a geometric pmf.

When the moment-generating function exists, derivatives of all orders exist at
t = 0. Thus, it is possible to represent M(t) as a Maclaurin series, namely,

M(t) = M(0) + M′(0)
(

t
1!
)

+ M′′(0)

(
t2

2!

)
+ M′′′(0)

(
t3

3!

)
+ · · · .

If the Maclaurin series expansion of M(t) exists and the moments are given, we can
sometimes sum the Maclaurin series to obtain the closed form of M(t). This approach
is illustrated in the next example.

Example
2.5-4

Let the moments of X be defined by

E(Xr) = 0.8, r = 1, 2, 3, . . . .

x
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Figure 2.5-1 Negative binomial probability histograms
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The moment-generating function of X is then

M(t) = M(0) +
∞∑

r=1

0.8
(

tr

r!
)

= 1 + 0.8
∞∑

r=1

tr

r!

= 0.2 + 0.8
∞∑

r=0

tr

r! = 0.2e0t + 0.8e1t.

Thus,

P(X = 0) = 0.2 and P(X = 1) = 0.8.

This is an illustration of a Bernoulli distribution.

The next example gives an application of the geometric distribution.

Example
2.5-5

A fair six-sided die is rolled until each face is observed at least once. On the average,
how many rolls of the die are needed? It always takes one roll to observe the first
outcome. To observe a different face from the first roll is like observing a geometric
random variable with p = 5/6 and q = 1/6. So on the average it takes 1/(5/6) = 6/5
rolls. After two different faces have been observed, the probability of observing a
new face is 4/6, so it will take, on the average, 1/(4/6) = 6/4 rolls. Continuing in this
manner, the answer is

1 + 6
5

+ 6
4

+ 6
3

+ 6
2

+ 6
1

= 147
10

= 14.7

rolls, on the average.

Exercises

2.5-1. An excellent free-throw shooter attempts several
free throws until she misses.

(a) If p = 0.9 is her probability of making a free throw,
what is the probability of having the first miss on the
13th attempt or later?

(b) If she continues shooting until she misses three, what
is the probability that the third miss occurs on the 30th
attempt?

2.5-2. Show that 63/512 is the probability that the fifth
head is observed on the tenth independent flip of a fair
coin.

2.5-3. Suppose that a basketball player different from the
ones in Example 2.5-2 and in Exercise 2.5-1 can make a
free throw 60% of the time. Let X equal the minimum
number of free throws that this player must attempt to
make a total of 10 shots.

(a) Give the mean, variance, and standard deviation of X.

(b) Find P(X = 16).

2.5-4. Suppose an airport metal detector catches a person
with metal 99% of the time. That is, it misses detecting
a person with metal 1% of the time. Assume indepen-
dence of people carrying metal. What is the probability
that the first metal-carrying person missed (not detected)
is among the first 50 metal-carrying persons scanned?

2.5-5. Let the moment-generating function M(t) of X
exist for −h < t < h. Consider the function R(t) =
ln M(t). The first two derivatives of R(t) are, respectively,

R′(t) = M′(t)
M(t)

and R′′(t) = M(t)M′′(t) − [M′(t)]2

[M(t)]2
.

Setting t = 0, show that

(a) μ = R′(0).

(b) σ 2 = R′′(0).

2.5-6. Use the result of Exercise 2.5-5 to find the mean
and variance of the

(a) Bernoulli distribution.

(b) Binomial distribution.
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(c) Geometric distribution.

(d) Negative binomial distribution.

2.5-7. If E(Xr) = 5r, r = 1, 2, 3, . . ., find the moment-
generating function M(t) of X and the pmf of X.

2.5-8. The probability that a company’s work force has
no accidents in a given month is 0.7. The numbers of acci-
dents from month to month are independent. What is
the probability that the third month in a year is the first
month that at least one accident occurs?

2.5-9. One of four different prizes was randomly put into
each box of a cereal. If a family decided to buy this cereal

until it obtained at least one of each of the four differ-
ent prizes, what is the expected number of boxes of cereal
that must be purchased?

2.5-10. In 2012, Red Rose tea randomly began placing 1
of 12 English porcelain miniature figurines in a l00-bag
box of the tea, selecting from 12 nautical figurines.

(a) On the average, how many boxes of tea must be pur-
chased by a customer to obtain a complete collection
consisting of the 12 nautical figurines?

(b) If the customer uses one tea bag per day, how long can
a customer expect to take, on the average, to obtain a
complete collection?

2.6 THE POISSON DISTRIBUTION
Some experiments result in counting the number of times particular events occur at
given times or with given physical objects. For example, we could count the number
of cell phone calls passing through a relay tower between 9 and l0 a.m., the number
of flaws in 100 feet of wire, the number of customers that arrive at a ticket window
between 12 noon and 2 p.m., or the number of defects in a 100-foot roll of aluminum
screen that is 2 feet wide. Counting such events can be looked upon as observations
of a random variable associated with an approximate Poisson process, provided that
the conditions in the following definition are satisfied.

Definition 2.6-1
Let the number of occurrences of some event in a given continuous interval be
counted. Then we have an approximate Poisson process with parameter λ > 0 if
the following conditions are satisfied:

(a) The numbers of occurrences in nonoverlapping subintervals are indepen-
dent.

(b) The probability of exactly one occurrence in a sufficiently short subinterval
of length h is approximately λh.

(c) The probability of two or more occurrences in a sufficiently short subinter-
val is essentially zero.

REMARK We use approximate to modify the Poisson process since we use approx-
imately in (b) and essentially in (c) to avoid the “little o” notation. Occasionally, we
simply say “Poisson process” and drop approximate.

Suppose that an experiment satisfies the preceding three conditions of an
approximate Poisson process. Let X denote the number of occurrences in an interval
of length 1 (where “length 1” represents one unit of the quantity under consid-
eration). We would like to find an approximation for P(X = x), where x is a
nonnegative integer. To achieve this, we partition the unit interval into n subin-
tervals of equal length 1/n. If n is sufficiently large (i.e., much larger than x), we
shall approximate the probability that there are x occurrences in this unit interval
by finding the probability that exactly x of these n subintervals each has one occur-
rence. The probability of one occurrence in any one subinterval of length 1/n is
approximately λ(1/n), by condition (b). The probability of two or more occurrences
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in any one subinterval is essentially zero, by condition (c). So, for each subinterval,
there is exactly one occurrence with a probability of approximately λ(1/n). Consider
the occurrence or nonoccurrence in each subinterval as a Bernoulli trial. By condi-
tion (a), we have a sequence of n Bernoulli trials with probability p approximately
equal to λ(1/n). Thus, an approximation for P(X = x) is given by the binomial
probability

n!
x! (n − x)!

(
λ

n

)x(
1 − λ

n

)n−x

.

If n increases without bound, then

lim
n→∞

n!
x! (n − x)!

(
λ

n

)x(
1 − λ

n

)n−x

= lim
n→∞

n(n − 1) · · · (n − x + 1)
nx

λx

x!
(

1 − λ

n

)n(
1 − λ

n

)−x

.

Now, for fixed x, we have

lim
n→∞

n(n − 1) · · · (n − x + 1)
nx = lim

n→∞

[
(1)

(
1 − 1

n

)
· · ·

(
1 − x − 1

n

)]
= 1,

lim
n→∞

(
1 − λ

n

)n

= e−λ,

lim
n→∞

(
1 − λ

n

)−x

= 1.

Thus,

lim
n→∞

n!
x! (n − x)!

(
λ

n

)x(
1 − λ

n

)n−x

= λxe−λ

x! = P(X = x).

The distribution of probability associated with this process has a special name. We
say that the random variable X has a Poisson distribution if its pmf is of the form

f (x) = λxe−λ

x! , x = 0, 1, 2, . . . ,

where λ > 0.
It is easy to see that f (x) has the properties of a pmf because, clearly, f (x) ≥ 0

and, from the Maclaurin series expansion of eλ, we have

∞∑
x=0

λxe−λ

x! = e−λ
∞∑

x=0

λx

x! = e−λeλ = 1.

To discover the exact role of the parameter λ > 0, let us find some of the
characteristics of the Poisson distribution. The mgf of X is

M(t) = E(etX) =
∞∑

x=0

etx λxe−λ

x! = e−λ
∞∑

x=0

(λet)x

x! .

From the series representation of the exponential function, we have

M(t) = e−λeλet = eλ(et−1)
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for all real values of t. Now,

M′(t) = λeteλ(et−1)

and

M′′(t) = (λet)2eλ(et−1) + λeteλ(et−1).

The values of the mean and variance of X are, respectively,

μ = M′(0) = λ

and

σ 2 = M′′(0) − [M′(0)]2 = (λ2 + λ) − λ2 = λ.

That is, for the Poisson distribution, μ = σ 2 = λ.

REMARK It is also possible to find the mean and the variance for the Poisson dis-
tribution directly, without using the mgf. The mean for the Poisson distribution is
given by

E(X) =
∞∑

x=0

x
λxe−λ

x! = e−λ
∞∑

x=1

λx

(x − 1)!

because (0)f (0) = 0 and x/x! = 1/(x − 1)! when x > 0. If we let k = x − 1, then

E(X) = e−λ
∞∑

k=0

λk+1

k! = λ e−λ
∞∑

k=0

λk

k!
= λ e−λeλ = λ.

To find the variance, we first determine the second factorial moment
E[X(X − 1)]. We have

E[X(X − 1)] =
∞∑

x=0

x(x − 1)
λxe−λ

x! = e−λ
∞∑

x=2

λx

(x − 2)!

because (0)(0 − 1)f (0) = 0, (1)(1 − 1)f (1) = 0, and x(x − 1)/x! = 1/(x − 2)! when
x > 1. If we let k = x − 2, then

E[X(X − 1)] = e−λ
∞∑

k=0

λk+2

k! = λ2e−λ
∞∑

k=0

λk

k!

= λ2e−λeλ = λ2.

Thus,

Var(X) = E(X2) − [E(X)]2 = E[X(X − 1)] + E(X) − [E(X)]2

= λ2 + λ − λ2 = λ.

We again see that, for the Poisson distribution, μ = σ 2 = λ.

Table III in Appendix B gives values of the cdf of a Poisson random variable for
selected values of λ. This table is illustrated in the next example.
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Example
2.6-1

Let X have a Poisson distribution with a mean of λ = 5. Then, using Table III in
Appendix B, we obtain

P(X ≤ 6) =
6∑

x=0

5xe−5

x! = 0.762,

P(X > 5) = 1 − P(X ≤ 5) = 1 − 0.616 = 0.384,

and

P(X = 6) = P(X ≤ 6) − P(X ≤ 5) = 0.762 − 0.616 = 0.146.

Example
2.6-2

To see the effect of λ on the pmf f (x) of X, Figure 2.6-1 shows the probability
histograms of f (x) for four different values of λ.

If events in an approximate Poisson process occur at a mean rate of λ per unit,
then the expected number of occurrences in an interval of length t is λt. For exam-
ple, let X equal the number of alpha particles emitted by barium-133 in one second
and counted by a Geiger counter. If the mean number of emitted particles is 60
per second, then the expected number of emitted particles in 1/10 of a second is
60(1/10) = 6. Moreover, the number of emitted particles, say X, in a time interval
of length t has the Poisson pmf

f (x) = (λt)xe−λt

x! , x = 0, 1, 2, . . . .
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Figure 2.6-1 Poisson probability histograms



Section 2.6 The Poisson Distribution 83

This equation follows if we treat the interval of length t as if it were the “unit
interval” with mean λt instead of λ.

Example
2.6-3

A USB flash drive is sometimes used to back up computer files. However, in the past,
a less reliable backup system that was used was a computer tape, and flaws occurred
on these tapes. In a particular situation, flaws (bad records) on a used computer
tape occurred on the average of one flaw per 1200 feet. If one assumes a Poisson
distribution, what is the distribution of X, the number of flaws in a 4800-foot roll?
The expected number of flaws in 4800 = 4(1200) feet is 4; that is, E(X) = 4. Thus,
the pmf of X is

f (x) = 4xe−4

x! , x = 0, 1, 2, . . . ,

and, in particular,

P(X = 0)= 40e−4

0! = e−4 = 0.018,

P(X ≤ 4)=0.629,

by Table III in Appendix B.

Example
2.6-4

In a large city, telephone calls to 911 come on the average of two every 3 minutes. If
one assumes an approximate Poisson process, what is the probability of five or more
calls arriving in a 9-minute period? Let X denote the number of calls in a 9-minute
period. We see that E(X) = 6; that is, on the average, six calls will arrive during a
9-minute period. Thus,

P(X ≥ 5)=1 − P(X ≤ 4) = 1 −
4∑

x=0

6xe−6

x!
=1 − 0.285 = 0.715,

by Table III in Appendix B.

Not only is the Poisson distribution important in its own right, but it can also be
used to approximate probabilities for a binomial distribution. Earlier we saw that if
X has a Poisson distribution with parameter λ, then with n large,

P(X = x) ≈
(

n
x

)(
λ

n

)x(
1 − λ

n

)n−x

,

where p = λ/n, so that λ = np in the above binomial probability. That is, if X has
the binomial distribution b(n, p) with large n and small p, then

(np)xe−np

x! ≈
(

n
x

)
px(1 − p)n−x.

This approximation is reasonably good if n is large. But since λ was a fixed con-
stant in that earlier argument, p should be small, because np = λ. In particular, the
approximation is quite accurate if n ≥ 20 and p ≤ 0.05 or if n ≥ 100 and p ≤ 0.10,
but it is not bad in other situations violating these bounds somewhat, such as n = 50
and p = 0.12.
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Example
2.6-5

A manufacturer of Christmas tree light bulbs knows that 2% of its bulbs are defec-
tive. Assuming independence, the number of defective bulbs in a box of 100 bulbs
has a binomial distribution with parameters n = 100 and p = 0.02. To approximate
the probability that a box of 100 of these bulbs contains at most three defective bulbs,
we use the Poisson distribution with λ = 100(0.02) = 2, which gives

3∑
x=0

2xe−2

x! = 0.857,

from Table III in Appendix B. Using the binomial distribution, we obtain, after some
tedious calculations,

3∑
x=0

(
100

x

)
(0.02)x(0.98)100−x = 0.859.

Hence, in this case, the Poisson approximation is extremely close to the true value,
but much easier to find.

REMARK With the availability of statistical computer packages and statistical cal-
culators, it is often very easy to find binomial probabilities. So do not use the Poisson
approximation if you are able to find the probability exactly.

Example
2.6-6

In Figure 2.6-2, Poisson probability histograms have been superimposed on shaded
binomial probability histograms so that we can see whether or not these are close to
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Figure 2.6-2 Binomial (shaded) and Poisson probability histograms
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each other. If the distribution of X is b(n, p), the approximating Poisson distribution
has a mean of λ = np. Note that the approximation is not good when p is large (e.g.,
p = 0.30).

Exercises

2.6-1. Let X have a Poisson distribution with a mean of 4.
Find

(a) P(2 ≤ X ≤ 5).

(b) P(X ≥ 3).

(c) P(X ≤ 3).

2.6-2. Let X have a Poisson distribution with a variance
of 3. Find P(X = 2).

2.6-3. Customers arrive at a travel agency at a mean rate
of 11 per hour. Assuming that the number of arrivals per
hour has a Poisson distribution, give the probability that
more than 10 customers arrive in a given hour.

2.6-4. Find P(X = 4) if X has a Poisson distribution
such that 3P(X = 1) = P(X = 2).

2.6-5. Flaws in a certain type of drapery material appear
on the average of one in 150 square feet. If we assume a
Poisson distribution, find the probability of at most one
flaw appearing in 225 square feet.

2.6-6. A certain type of aluminum screen that is 2 feet
wide has, on the average, one flaw in a 100-foot roll. Find
the probability that a 50-foot roll has no flaws.

2.6-7. With probability 0.001, a prize of $499 is won in
the Michigan Daily Lottery when a $1 straight bet is
placed. Let Y equal the number of $499 prizes won by
a gambler after placing n straight bets. Note that Y is
b(n, 0.001). After placing n = 2000 $1 bets, the gambler
is behind or even if {Y ≤ 4}. Use the Poisson distribution
to approximate P(Y ≤ 4) when n = 2000.

2.6-8. Suppose that the probability of suffering a side
effect from a certain flu vaccine is 0.005. If 1000 persons
are inoculated, find the approximate probability that

(a) At most 1 person suffers.

(b) 4, 5, or 6 persons suffer.

2.6-9. A store selling newspapers orders only n = 4 of
a certain newspaper because the manager does not get
many calls for that publication. If the number of requests
per day follows a Poisson distribution with mean 3,

(a) What is the expected value of the number sold?

(b) What is the minimum number that the manager
should order so that the chance of having more
requests than available newspapers is less than 0.05?

2.6-10. The mean of a Poisson random variable X is
μ = 9. Compute

P(μ − 2σ < X < μ + 2σ ).

2.6-11. An airline always overbooks if possible. A partic-
ular plane has 95 seats on a flight in which a ticket sells
for $300. The airline sells 100 such tickets for this flight.

(a) If the probability of an individual not showing up is
0.05, assuming independence, what is the probability
that the airline can accommodate all the passengers
who do show up?

(b) If the airline must return the $300 price plus a penalty
of $400 to each passenger that cannot get on the
flight, what is the expected payout (penalty plus ticket
refund) that the airline will pay?

2.6-12. A baseball team loses $100,000 for each consecu-
tive day it rains. Say X, the number of consecutive days
it rains at the beginning of the season, has a Poisson dis-
tribution with mean 0.2. What is the expected loss before
the opening game?

2.6-13. Assume that a policyholder is four times more
likely to file exactly two claims as to file exactly three
claims. Assume also that the number X of claims
of this policyholder is Poisson. Determine the expectation
E(X2).

HISTORICAL COMMENTS The next major items advanced in probability the-
ory were by the Bernoullis, a remarkable Swiss family of mathematicians of the
late 1600s to the late 1700s. There were eight mathematicians among them, but we
shall mention just three of them: Jacob, Nicolaus II, and Daniel. While writing Ars
Conjectandi (The Art of Conjecture), Jacob died in 1705, and a nephew, Nicolaus II,
edited the work for publication. However, it was Jacob who discovered the important
law of large numbers, which is included in our Section 5.8.
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Another nephew of Jacob, Daniel, noted in his St. Petersburg paper that
“expected values are computed by multiplying each possible gain by the number of
ways in which it can occur and then dividing the sum of these products by the total
number of cases.” His cousin, Nicolaus II, then proposed the so-called St. Petersburg
paradox: Peter continues to toss a coin until a head first appears—say, on the xth
trial—and he then pays Paul 2x−1 units (originally ducats, but for convenience we
use dollars). With each additional throw, the number of dollars has doubled. How
much should another person pay Paul to take his place in this game? Clearly,

E(2X−1) =
∞∑

x=1

(2x−1)
(

1
2x

)
=

∞∑
x=1

1
2

= ∞.

However, if we consider this as a practical problem, would someone be willing to
give Paul $1000 to take his place even though there is this unlimited expected value?
We doubt it and Daniel doubted it, and it made him think about the utility of money.
For example, to most of us, $3 million is not worth three times $1 million. To convince
you of that, suppose you had exactly $1 million and a very rich man offers to bet you
$2 million against your $1 million on the flip of a coin. You will have zero or $3
million after the flip, so your expected value is

($0)
(

1
2

)
+ ($3,000,000)

(
1
2

)
= $1,500,000,

much more than your $1 million. Seemingly, then, this is a great bet and one that
Bill Gates might take. However, remember you have $1 million for certain and you
could have zero with probability 1/2. None of us with limited resources should con-
sider taking that bet, because the utility of that extra money to us is not worth the
utility of the first $1 million. Now, each of us has our own utility function. Two dollars
is worth twice as much as one dollar for practically all of us. But is $200,000 worth
twice as much as $100,000? It depends upon your situation; so while the utility func-
tion is a straight line for the first several dollars, it still increases but begins to bend
downward someplace as the amount of money increases. This occurs at different
spots for all of us. Bob Hogg, one of the authors of this text, would bet $1000 against
$2000 on a flip of the coin anytime, but probably not $100,000 against $200,000, so
Hogg’s utility function has started to bend downward someplace between $1000 and
$100,000. Daniel Bernoulli made this observation, and it is extremely useful in all
kinds of businesses.

As an illustration, in insurance, most of us know that the premium we pay for
all types of insurance is greater than what the company expects to pay us; that is
how they make money. Seemingly, insurance is a bad bet, but it really isn’t always.
It is true that we should self-insure less expensive items—those whose value is on
that straight part of the utility function. We have even heard the “rule” that you not
insure anything worth less than two months’ salary; this is a fairly good guide, but
each of us has our own utility function and must make that decision. Hogg can afford
losses in the $5000 to $10,000 range (not that he likes them, of course), but he does
not want to pay losses of $100,000 or more. So his utility function for negative values
of the argument follows that straight line for relatively small negative amounts but
again bends down for large negative amounts. If you insure expensive items, you will
discover that the expected utility in absolute value will now exceed the premium.
This is why most people insure their life, their home, and their car (particularly on
the liability side). They should not, however, insure their golf clubs, eyeglasses, furs,
or jewelry (unless the latter two items are extremely valuable).


